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Abstract. For N≥3 and non-negative real numbers aij and bij (i, j=1,··· ,m), the semi-
linear elliptic system















∆ui+
m

∏
j=1

u
aij

j =0, in RN
+ ,

∂ui

∂yN
= ci

m

∏
j=1

u
bij

j , on ∂RN
+ ,

i=1,··· ,m,

is considered, where RN
+ is the upper half of N-dimensional Euclidean space. Under

suitable assumptions on the exponents aij and bij, a classification theorem for the pos-

itive C2(RN
+)∩C1(RN

+)-solutions of this system is proven.
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1 Introduction

Let N≥3 be a positive integer and let RN
+={(y1,··· ,yN)∈RN : yN >0} denote the upper

half of N-dimensional Euclidean space. Fix a positive integer m and set J={1,··· ,m}. Let

A=[aij] be an m×m matrix with nonnegative entries. We are concerned with the classical

solutions of the semi-linear elliptic system

∆ui+
m

∏
j=1

u
aij

j =0, in Ω⊂R
N for all i∈ J. (1.1)
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This system and its variants have been studied extensively in numerous contexts. For

example, (1.1) arises as the system of equations for a steady-state solution to the corre-

sponding parabolic reaction-diffusion system. In particular, when m=2 the system










∂u1

∂t
=∆u1+ua11

1 ua12
2 , for y∈Ω, t>0,

∂u2

∂t
=∆u2+ua21

1 ua22
2 , for y∈Ω, t>0,

(1.2)

has received much attention. For example, when a11 = a22 =0, (1.2) gives a simple model

for heat propagation in a two-component combustible mixture [1]. Variants of (1.2) have

also been used to model the diffusing densities of two biological species when each specie

finds its subsidence from the activity of the other specie [2]. It is well-known that a

thorough understanding of (1.1) is highly beneficial to obtaining an understanding of

(1.2). For example, under appropriate assumptions on A, in [3] and [4] Mitidieri proved

nonexistence results for (1.1) when Ω = RN and m = 2. These results were refined by

Zheng in [5] and then used to derive blow-up (in time) estimates for solutions of (1.2)

that satisfy suitable initial and boundary conditions. For more results concerning these

parabolic systems and their variants the reader is referred to [6, 7] and the references

therein.

An interesting case of (1.1) arises when A satisfies


















aij ≥0, for all (i, j)∈ J× J,

A is irreducible ,
m

∑
j=1

aij =
N+2
N−2 , for all i∈ J.

(1.3)

Recall that an m×m-matrix A is called irreducible if there is no partition J = I1∪ I2 such

that aij =0 for all i∈ I1, and j∈ I2. When m=1 equations (1.1) reduce to

∆u+Ku(N+2)/(N−2)=0, (1.4)

with K = 1. Eq. (1.4) has been studied extensively as it arises in relation to the famous

Yamabe problem. The Yamabe problem asks whether it is always possible to confor-

mally deform the metric g of a given smooth compact Riemannian manifold to a metric

ĝ = u4/(N−2)g whose scalar curvature is constant. Through the works of Trudinger [8],

Aubin [9] and Schoen [10], the Yamabe problem was proven affirmative. See [11] and the

references therein for results regarding the Yamabe problem. For A satisfying (1.3) and

Ω=RN, the classical solutions of (1.1) were classified by Chipot, Shafrir and Wolansky

in [12] (see also [13]). Their result is the following.

Theorem 1.1 (Chipot, Shafrir and Wolansky [12]). Suppose A satisfies (1.3). If u1,··· ,um are

positive C2(RN)-solutions of (1.1) with Ω=RN then

ui(y)=
βi

(

σ2+|y−y0|2
)(N−2)/2

, for all i∈ J, (1.5)


