Wave Kernels with Bi-Inverse Square Potentials on Euclidean Plane

MOUSTAPHA Mohamed Vall Ould*

Université des Sciences, de Technologie et de la Médecine (USTM), Faculté des Sciences et Techniques. Unité de recherche: Analyse EDP et Modélisation, Facult des Sciences et Techniques, Universit des Sciences de Technologie et de la médecine, Nouakchott BP: 5026 Mauritanie.

Received 1 June 2014; Accepted 17 December 2014

Abstract. The Cauchy problem for the wave equation with bi-inverse square potential on Euclidean plane is solved in terms of the two variables Appell F_2 hypergeometric functions. Our principal tools are the Hankel transforms and the special functions of mathematical physics.

AMS Subject Classifications: 35J05; 35J10

Chinese Library Classifications: O175.25

Key Words: Inverse square potential; wave equation; Hankel transform; Bessl functions; F_2 -Appell hypergeometric function.

1 Introduction and statement of results

Consider the following Cauchy problem of the wave type on Euclidean plane

$$\begin{cases} L_{(\nu,\nu')}u(t,p) = \partial_t^2 u(t,p), & (t,p) \in \mathbb{R} \times \mathbb{R}_+^{*\,2}, \\ u(0,p) = 0, \quad \partial_t u(0,p) = f(p) \in C_0^{\infty}(\mathbb{R}_+^{*\,2}), \end{cases}$$
(1.1)

where

$$L_{(\nu,\nu')} = \frac{\partial^2}{\partial x^2} + \frac{\partial^2}{\partial y^2} + \frac{1/4 - \nu^2}{x^2} + \frac{1/4 - \nu'^2}{y^2},$$
(1.2)

http://www.global-sci.org/jpde/

^{*}Corresponding author. Email addresses: khames@ustm.mr (M. V. O. Moustapha)

is called here the Schrödinger operator with bi-inverse square potential and ν and ν' are real parameters. For the classical Schrödinger operator with inverse square potential

$$L_{\nu} = \frac{\partial^2}{\partial x^2} + \frac{1/4 - \nu^2}{x^2},$$
 (1.3)

on the half real line \mathbb{R}^*_+ , the solution of the problem (1.1) is (Taylor [1], p.132-133):

$$u(t,x) = \int_0^\infty W_\nu(\sigma(t,x,x')f(x')dx', \qquad (1.4)$$

where

$$W_{\nu}(\sigma) = \begin{cases} 0, & \text{when } 1 < \sigma, \\ \frac{1}{2} P_{\nu - \frac{1}{2}}(\sigma), & \text{when } -1 < \sigma < 1, \\ \frac{\cos \pi \nu}{\pi} Q_{\nu - \frac{1}{2}}(-\sigma), & \text{when } \sigma < -1, \end{cases}$$
(1.5)

where P_m and Q_m denote the Legendre functions of degree *m* of the first and second kind respectively:

$$P_m(\sigma) = F(-m,m+1,1;(1-\sigma)/2),$$

$$Q_m(\sigma) = B(1/2,m+1)\frac{1}{(2\sigma)^{m+1}}F((m+1)/2,(m+2)/2;m+3/2;1/\sigma^2),$$

and $\sigma(t, x, x') = (x^2 + x'^2 - t^2)/(2xx')$.

The Gauss hypergeometric function is defined by:

$$F(a,b,c;z) = \sum_{n=0}^{\infty} \frac{(a)_n(b)_n}{(c)_n n!} z^n, \quad (|z| < 1),$$

where as usual $(a)_n$ is the Pochhamer symbol defined by

$$(a)_n = \frac{\Gamma(a+n)}{\Gamma(a)}.$$
(1.6)

The functions *B* and Γ are the classical Euler functions.

The inverse square potential arises in several contexts, one of them is the Schrödinger equation in non relativistic quantum mechanics (Reed and Simon [2]). For example, the Hamiltonian for a spinzero particle in Coulomb field gives rise to a Schrödinger operator involving the inverse square potential (Case [3]).

The Cauchy problem for the wave equation with the inverse square potential in Euclidean space \mathbb{R}^n is extensively studied (Burg et al [4]), (Cheeger and Taylor [5]), (Lamb [6]) and (Planchon et al [7]). The bi-inverse square potential has been considered by (Boyer [8]) in the case of the Schrödinger equation.