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Abstract. The Cauchy problem for the wave equation with bi-inverse square potential
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1 Introduction and statement of results

Consider the following Cauchy problem of the wave type on Euclidean plane

{

L(ν,ν′)u(t,p)=∂2
t u(t,p), (t,p)∈R×R

∗
+

2,

u(0,p)=0, ∂tu(0,p)= f (p)∈C∞
0 (R∗

+
2),

(1.1)

where

L(ν,ν′)=
∂2

∂x2
+

∂2

∂y2
+

1/4−ν2

x2
+

1/4−ν′2

y2
, (1.2)
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is called here the Schrödinger operator with bi-inverse square potential and ν and ν′ are

real parameters. For the classical Schrödinger operator with inverse square potential

Lν=
∂2

∂x2
+

1/4−ν2

x2
, (1.3)

on the half real line R
∗
+, the solution of the problem (1.1) is (Taylor [1], p.132-133):

u(t,x)=
∫ ∞

0
Wν(σ(t,x,x′) f (x′)dx′, (1.4)

where

Wν(σ)=























0, when 1<σ,

1

2
Pν− 1

2
(σ), when −1<σ<1,

cosπν

π
Qν− 1

2
(−σ), when σ<−1,

(1.5)

where Pm and Qm denote the Legendre functions of degree m of the first and second kind

respectively:

Pm(σ)=F(−m,m+1,1;(1−σ)/2),

Qm(σ)=B(1/2,m+1)
1

(2σ)m+1
F((m+1)/2,(m+2)/2;m+3/2;1/σ2),

and σ(t,x,x′)=(x2+x′2−t2)/(2xx′).
The Gauss hypergeometric function is defined by:

F(a,b,c;z)=
∞

∑
n=0

(a)n(b)n

(c)nn!
zn, (|z|<1),

where as usual (a)n is the Pochhamer symbol defined by

(a)n =
Γ(a+n)

Γ(a)
. (1.6)

The functions B and Γ are the classical Euler functions.

The inverse square potential arises in several contexts, one of them is the Schrödinger

equation in non relativistic quantum mechanics (Reed and Simon [2]) . For example, the

Hamiltonian for a spinzero particle in Coulomb field gives rise to a Schrödinger operator

involving the inverse square potential (Case [3]).

The Cauchy problem for the wave equation with the inverse square potential in Eu-

clidean space R
n is extensively studied (Burg et al [4]), (Cheeger and Taylor [5]), (Lamb

[6]) and (Planchon et al [7]). The bi-inverse square potential has been considered by

(Boyer [8]) in the case of the Schrödinger equation.


