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Abstract. In this note, we establish a companion result to the theorem of J. Szabados
on the maximum of fundamental functions of Lagrange interpolation based on Cheby-
shev nodes.
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1 Introduction

Let T, (x) = cos(narccos x) be the Chebyshev polynomial of degree n with the roots
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be the fundamental polynomials of Lagrange interpolation based on the Chebyshev nodes.
Setting
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it is easy to see that
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and
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In [1], Erdos and Griinwald proved the following theorem.

Theorem 1.1. We have

‘lk,ﬂ(x)’<%l "x’§1/ 1§k§7’l, 1’1:1,2,"‘. (12)
Moreover,
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It follows from Theorem 1.1 that
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In [2], ]. Szabados proved the following theorem.

Theorem 1.2. We have
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It is natural to ask that which of M}, and M,, is bigger and what is the behavior of M;?
In this note we prove the following theorem.

Theorem 1.3. We have
lim M =1. (1.5)
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2 Proof of Theorem 1.3

For convenience, we denote ty,,, Xi,, Ik (x) and Iy, by ti, xx, l(x), and I respectively
and denote Ii(cost) by fx(t), k=1,2,---,n. In order to prove Theorem 1.3, we need the
following lemmas.

Lemma 2.1. Fork=2,3,---,[(n+1)/2], n>2, t€[0,t;_1]N[tx+1,7T], we have
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