A Note on a Theorem of J. Szabados

Laiyi Zhu and Yang Tan*
School of Information, Renmin University of China, Beijing 100872, China
Received 29 April 2013; Accepted (in revised version) 30 May 2013
Available online 30 September 2013

Abstract

In this note, we establish a companion result to the theorem of J. Szabados on the maximum of fundamental functions of Lagrange interpolation based on Chebyshev nodes.

Key Words: Lagrange interpolation, Chebyshev polynomial, fundamental function of interpolation.

AMS Subject Classifications: 41A05, 41A10

1 Introduction

Let $T_{n}(x)=\cos (n \arccos x)$ be the Chebyshev polynomial of degree n with the roots

$$
x_{k, n}=\cos t_{k, n}, \quad t_{k, n}=\frac{2 k-1}{2 n} \pi, \quad k=1,2, \cdots, n,
$$

and let

$$
\begin{equation*}
l_{k, n}(x)=\frac{(-1)^{k-1} \cos n t \sin t_{k, n}}{n\left(\cos t-\cos t_{k, n}\right)}, \quad x=\cos t, \quad k=1,2, \cdots, n, \tag{1.1}
\end{equation*}
$$

be the fundamental polynomials of Lagrange interpolation based on the Chebyshev nodes. Setting

$$
\begin{array}{ll}
l_{k, n}=\max _{|x| \leq 1} l_{k, n}(x), & k=1,2, \cdots, n, \\
M_{n}(x)=\max _{1 \leq k \leq n} l_{k, n}(x), & |x| \leq 1, \\
\bar{M}_{n}=\max _{|x| \leq 1} M_{n}(x), & \underline{M}_{n}=\min _{|x| \leq 1} M_{n}(x), \\
\bar{M}_{n}^{*}=\max _{1 \leq k \leq n} l_{k, n}, & \underline{M}_{n}^{*}=\min _{1 \leq k \leq n} l_{k, n},
\end{array}
$$

[^0]it is easy to see that
$$
\underline{M}_{n} \leq \bar{M}_{n} \leq \bar{M}_{n}^{*},
$$
and
$$
\underline{M}_{n}^{*} \leq \bar{M}_{n} .
$$

In [1], Erdös and Grünwald proved the following theorem.
Theorem 1.1. We have

$$
\begin{equation*}
\left|l_{k, n}(x)\right|<\frac{4}{\pi^{\prime}} \quad|x| \leq 1, \quad 1 \leq k \leq n, \quad n=1,2, \cdots . \tag{1.2}
\end{equation*}
$$

Moreover,

$$
\begin{equation*}
\lim _{n \rightarrow \infty} l_{1, n}(1)=\lim _{n \rightarrow \infty} l_{n, n}(-1)=\frac{4}{\pi} . \tag{1.3}
\end{equation*}
$$

It follows from Theorem 1.1 that

$$
\lim _{n \rightarrow \infty} \bar{M}_{n}=\lim _{n \rightarrow \infty} \bar{M}_{n}^{*}=\frac{4}{\pi} .
$$

In [2], J. Szabados proved the following theorem.
Theorem 1.2. We have

$$
\begin{equation*}
\lim _{n \rightarrow \infty} \underline{M}_{n}=\frac{2}{\pi} \cos \frac{2-\sqrt{3}}{2} \pi=0.580 \cdots . \tag{1.4}
\end{equation*}
$$

It is natural to ask that which of \underline{M}_{n}^{*} and \underline{M}_{n} is bigger and what is the behavior of \underline{M}_{n}^{*} ? In this note we prove the following theorem.

Theorem 1.3. We have

$$
\begin{equation*}
\lim _{n \rightarrow \infty} \underline{M}_{n}^{*}=1 \tag{1.5}
\end{equation*}
$$

2 Proof of Theorem 1.3

For convenience, we denote $t_{k, n}, x_{k, n}, l_{k, n}(x)$ and $l_{k, n}$ by $t_{k}, x_{k}, l_{k}(x)$, and l_{k} respectively and denote $l_{k}(\cos t)$ by $f_{k}(t), k=1,2, \cdots, n$. In order to prove Theorem 1.3, we need the following lemmas.

Lemma 2.1. For $k=2,3, \cdots,[(n+1) / 2], n>2, t \in\left[0, t_{k-1}\right] \cap\left[t_{k+1}, \pi\right]$, we have

$$
\begin{equation*}
\left|f_{k}(t)\right| \leq \frac{2}{\pi} \tag{2.1}
\end{equation*}
$$

[^0]: *Corresponding author. Email addresses: zhulaiyi@ruc. edu.cn (L. Y. Zhu), shutongtan@sina.com (Y. Tan)

