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SPECTRAL APPROXIMATION OF TIME-HARMONIC

MAXWELL EQUATIONS IN THREE-DIMENSIONAL EXTERIOR

DOMAINS

LINA MA, JIE SHEN, AND LI-LIAN WANG

Abstract. We develop in this paper an efficient and robust spectral-Galerkin method for solving
the three-dimensional time-harmonic Maxwell equations in exterior domains. We first reduce the
problem to a bounded domain by using the capacity operator which characterizes the transparent
boundary condition (TBC). Then, we adopt the transformed field expansion (TFE) approach to
reduce the problem to a sequence of Maxwell equations in a spherical shell. Finally, we develop
an efficient spectral algorithm by using Legendre approximation in the radial direction and vector
spherical harmonic expansion in the tangential directions.
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1. Introduction

We consider in this paper the approximation of the time-harmonic Maxwell equa-
tions in a three-dimensional exterior domain:

− iωµH + curlE = 0, −iωεE − curlH = 0, in R
3\D̄;

E × n|∂D = g; lim
r→∞

r
(√

µ/εH × er −E
)
= 0,

(1)

where D is a three-dimensional, simply connected, bounded scatterer, i =
√
−1

is the complex unit, g is resulted from a given incident field, µ is the magnetic
permeability, ε is the electric permittivity, ω is the frequency of the harmonic wave,
n is the unit outward normal of D and er = x/r with r = |x|. The boundary
condition at infinity in (1) is known as the Silver-Müller radiation condition.

The Maxwell equations (1) play an important role in many scientific and engi-
neering applications, and are also of fundamental mathematical interest (see e.g.,
[13, 4, 11]). Despite its seemingly simplicity, the system (1) is notoriously difficult
to solve numerically. Some of the main challenges include: (i) the indefiniteness
when ω is not small; (ii) highly oscillatory solutions when ω is large; (iii) the incom-
pressibility (i.e., div(µH) = div(εE) = 0), which is implicitly implied by (1); and
(iv) the unboundedness of the domain. On the one hand, one needs to construct ap-
proximation spaces such that the discrete problems are well posed and lead to good
approximations for a wide range of wave number. On the other hand, a perhaps
more difficult problem is to develop efficient algorithms for solving the indefinite
linear system, particularly for large wave numbers, from the given discretization.
We refer to [11] and the references therein, for various contributions with respect to
numerical approximations of the time-harmonic Maxwell equations. Most notably,
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a very popular and effective method for dealing with the unboundedness of the
domain is to introduce a perfectly matched layer (PML), initially proposed in [3].

In this paper, we propose a spectral approximation based on the tensor-product
of vector spherical harmonics (VSH), which forms a complete orthogonal basis for
L2-vector-valued functions on the spherical surface, and Legendre polynomials in
the radial direction. It is well-known that the Maxwell equations with constant
magnetic permeability and electric permittivity are separable if D is a ball, and
its solution can be explicitly expressed in terms of the VSH and the spherical
Hankel functions [13]. While the explicit solution is very useful for some theoretical
considerations, it has much less value in practice, since most practical problems
would have one or more of the following situations: non-spherical domains, non-
constant magnetic permeability and electric permittivity, non-homogeneous source
etc., where an explicit solution would not be available.

In order to deal with more general scatterers D and non-homogeneous source
functions, we adapt the so-called transformed field expansion (TFE) [15], which
has proven to be effective for a variety of situations (cf. [14, 5, 6, 9]). The TFE
approach consists of four steps: (i) reduce the problem in an unbounded domain
to a bounded domain with transparent boundary conditions; (ii) transform the
reduced bounded domain to a separable domain, consider the reduced domain as
a perturbation of the separable domain, and expand the solution in term of the
perturbation parameter ε; (iii) solve for each expansion coefficient in the separable
domain; and (iv) sum up the expansion terms using a robust Padé approximation.
The essential step in the above TFE approach is the step (iii), i.e., solve the Maxwell
equations in the separable domain (which is a spherical shell in this case) with non-
homogeneous source term and non-local boundary conditions at the outer spherical
surface.

In this paper, we shall develop an efficient and robust spectral solver for the
non-homogeneous Maxwell equations in a spherical shell. More precisely, we shall
use VSH to decouple the problem into a sequence of one-dimensional problems that
can be efficiently solved using a direct spectral-Galerkin method. Therefore, the
entire TFE approach does not involve any iterative solver, and it is robust for low
to moderately high wave numbers and to scatterers which have sufficiently smooth
boundaries.

The rest of the paper is organized as follows. In the next section, we introduce the
VSH and present the formulation of the capacity operator characterizing the exact
non-reflecting boundary condition. In Section 3, we present the TFE algorithm,
and and formulae in Appendix B. In Section 4, we describe the Legendre spectral-
Galerkin method for the reduced one-dimensional problems, and give the numerical
results in Section 5. In Appendix A, we provide some useful formulae for the
VSH, while in Appendix B, we derive the Maxwell equation in the transformed
coordinates, and the recursion formulae in the TFE approach.

2. Vector spherical harmonics and the capacity operator

In this section, we recall some essential properties of VSH, and derive the explicit
formula for the capacity operator expressed in terms of VSH, which characterizes
the exact DtN boundary condition at the outer spherical surface.

2.1. Vector spherical harmonics. Several versions of VSH with different nota-
tion and properties have been used in practice (see e.g., [12, 10, 2, 13, 8, 7]). In
what follows, we adopt the family of VSH in [10, 13], and remark its relation with
several other families documented in the above literature (see Remark 2.1 below).


