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ASYMPTOTICALLY EXACT LOCAL DISCONTINUOUS

GALERKIN ERROR ESTIMATES FOR THE LINEARIZED

KORTEWEG-DE VRIES EQUATION IN ONE SPACE

DIMENSION

MAHBOUB BACCOUCH

Abstract. We present and analyze a posteriori error estimates for the local discontinuous
Galerkin (LDG) method for the linearized Korteweg-de Vries (KdV) equation in one space di-
mension. These estimates are computationally simple and are obtained by solving a local steady
problem with no boundary condition on each element. We extend the work of Hufford and Xing
[J. Comput. Appl. Math., 255 (2014), pp. 441-455] to prove new superconvergence results towards

particular projections of the exact solutions for the two auxiliary variables in the LDG method
that approximate the first and second derivatives of the solution. The order of convergence is
proved to be k + 3/2, when polynomials of total degree not exceeding k are used. These results
allow us to prove that the significant parts of the spatial discretization errors for the LDG solution
and its spatial derivatives (up to second order) are proportional to (k + 1)-degree Radau poly-
nomials. We use these results to construct asymptotically exact a posteriori error estimates and
prove that, for smooth solutions, these a posteriori LDG error estimates for the solution and its
spatial derivatives, at a fixed time t, converge to the true errors at O(hk+3/2) rate in the L2-norm.
Finally, we prove that the global effectivity indices, for the solution and its spatial derivatives,
converge to unity at O(h1/2) rate. Numerical results are presented to validate the theory.
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1. Introduction

The famous nonlinear Korteweg-de Vries (KdV) equation

ut + αux + γuux + βuxxx = 0,

with constants α, β, and γ, is derived by Korteweg and de Vries in 1895. It
describes the propagation of waves in a variety of nonlinear dispersive media. The
KdV equation is a generic equation for the study of weakly nonlinear long waves
and arises in many physical situations, such as surface water waves and plasma
waves. It has been shown that the KdV equation describes a large class of solitons
observed in various situations: acoustic waves on a crystal lattice, plasma waves,
hydrodynamics internal or surface waves, elastic surface waves, and waves in optical
fibers (see e.g., [27]).

In this paper we develop and analyze an implicit residual-based a posteriori error
estimates of the spatial errors for the semi-discrete local discontinuous Galerkin
(LDG) method applied to the linearized KdV equation

(1a) ut + αux + βuxxx = 0, x ∈ [a, b], t ∈ [0, T ],

subject to the initial and periodic boundary conditions

(1b) u(x, 0) = u0(x), x ∈ [a, b],

(1c) u(a, t) = u(b, t), ux(a, t) = ux(b, t), uxx(a, t) = uxx(b, t), t ∈ [0, T ].
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We would like to emphasize that the assumption of periodic boundary conditions
is for simplicity only and is not essential. In our analysis we select u0(x) such that
the exact solution u(x, t) is a smooth function on [a, b]× [0, T ].

The LDG method we discuss in this paper is an extension of the discontinuous
Galerkin (DG) method aimed at solving partial differential equations containing
higher than first-order spatial derivatives. The DG method is a class of finite ele-
ment methods, using discontinuous, piecewise polynomials as the numerical solution
and the test functions. It was first developed by Reed and Hill [31] for solving hy-
perbolic conservation laws containing only first-order spatial derivatives in 1973.
Consult [25] and the references cited therein for a detailed discussion of the his-
tory of DG method and a list of important citations on the DG method and its
applications. The LDG method for solving convection-diffusion problems was first
introduced by Cockburn and Shu in [26]. They further studied the stability and
error estimates for the LDG method. Castillo et al. [19] presented the first a priori
error analysis for the LDG method for a model elliptic problem. They considered
arbitrary meshes with hanging nodes and elements of various shapes and studied
general numerical fluxes. They showed that, for smooth solutions, the L2 errors in
∇u and in u are of order k and k + 1/2, respectively, when polynomials of total
degree not exceeding k are used. Cockburn et al. [24] presented a superconver-
gence result for the LDG method for a model elliptic problem on Cartesian grids.
They identified a special numerical flux for which the L2-norms of the gradient and
the potential are of orders k + 1/2 and k + 1, respectively, when tensor product
polynomials of degree at most k are used.

Yan and Shu [35] developed the first LDG method for solving KdV type equations
in one and two space dimensions. They proved L2 stability and a cell entropy
inequality for the square entropy for a class of nonlinear KdV equations in both
one and multiple space dimensions. They also proved an optimal error estimate for
the linear cases in the one-dimensional case. In [33], Xu and Shu proved L2 error
estimates for the semi-discrete LDG methods for the fully nonlinear KdV equation
with smooth solution. The order of convergence is proved to be k + 1/2, when
k-degree piecewise polynomials with k ≥ 1 are used. Later, Xu and Shu [34] proved
optimal L2 error estimates of the semi-discrete LDG methods for solving linear
higher-order wave equations including the linearized KdV equation. More recently,
Hufford and Xing [30] studied the superconvergence property of the LDG method
for solving the linearized KdV equation. They selected a special projection of the
initial condition and proved that the LDG solution is O(hk+3/2) super close to a
particular projection of the exact solution, when the upwind flux is used for the
convection term and the alternating flux is used for the dispersive term.

A posteriori error estimates lie in the heart of every adaptive finite element algo-
rithm for differential equations. They are used to assess the quality of numerical
solutions and guide the adaptive enrichment process where elements having high
errors are enriched by h-refinement and/or p-refinement while elements with small
errors are h- and/or p-coarsened. Furthermore, error estimates are used to stop the
adaptive refinement process. For an introduction to the subject of a posteriori error
estimation see the monograph of Ainsworth and Oden [6]. Several a posteriori DG
error estimates are known for hyperbolic [22, 23, 28] and diffusive [29, 32] problems.
Adjerid and Baccouch [3, 12, 10] investigated the global convergence of the implicit
residual-based a posteriori error estimates of Adjerid et al. [5]. They proved that
these a posteriori error estimates converge to the true spatial error in the L2-norm


