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A CONFORMING FINITE ELEMENT DISCRETIZATION OF THE

STREAMFUNCTION FORM OF THE UNSTEADY QUASI-GEOSTROPHIC

EQUATIONS

ERICH L FOSTER, TRAIAN ILIESCU, DAVID WELLS, AND DAVID WELLS

Abstract. This paper presents a conforming finite element semi-discretization of the streamfunction form of the

one-layer unsteady quasi-geostrophic equations, which are a commonly used model for large-scale wind-driven ocean
circulation. We derive optimal error estimates and present numerical results.
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1. Introduction

The quasi-geostrophic equations (QGE), a standard simplified mathematical model for large scale
oceanic and atmospheric flows [7, 23, 25, 28], are often used in climate models [8]. We consider a
finite element (FE) discretization of the QGE to allow for better modeling of irregular geometries.
Indeed, it is important to represent features like coastlines in ocean models; numerical artifacts
can result from stepwise boundaries, which can affect ocean circulation predictions over long time
integration [1, 9, 30].

Most analyses of the QGE have been done on the mixed streamfunction-vorticity rather than the
pure streamfunction form. This work focuses on the latter, which has the advantage of known opti-
mal error estimates (see the error estimate 13.5 and Table 13.1 in [17]). However, the disadvantage
of not using a mixed formulation is that the pure streamfunction form of the QGE is a fourth-order
problem: this necessitates the use of a C1 FE space for a conforming FE discretization.

In what follows we first introduce, in Section 1, the streamfunction-vorticity form of the QGE
and its nondimensionalization, followed by the pure streamfunction form of the QGE. In Section 3
we introduce the functional setting and the FE discretization in space. From there, we develop
optimal error estimates in Section 4 followed by, in Section 5, numerical verification of the error
estimates developed in Section 4.

2. The Quasi-Geostrophic Equations

The QGE are usually written as follows (e.g., equation (14.57) in [28], equation (1.1) in [23],
equation (1.1) in [29], and equation (1) in [16]):

∂q

∂t
+ J(ψ, q) = A∆q + F(1a)

q = ∆ψ + β y,(1b)

where q is the potential vorticity, ψ is the velocity streamfunction, β is the coefficient multiplying
the y-coordinate (which is oriented northward) in the β-plane approximation (3), F is the forcing,
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A is the eddy viscosity parameterization, and J(·, ·) is the Jacobian operator given by

J(ψ, q) :=
∂ψ

∂x

∂q

∂y
− ∂ψ

∂y

∂q

∂x
.(2)

The β-plane approximation reads

(3) f = f0 + β y,

where f is the Coriolis parameter and f0 is the reference Coriolis parameter (see the discussion
on page 84 in [6] or Section 2.3.2 in [28]). As noted in Chapter 10.7.2 in [28] (see also [27]), the
eddy viscosity parameter A in (1a) is usually several orders of magnitude higher than the molecular
viscosity. This choice allows the use of a coarse mesh in numerical simulations. The horizontal
velocity u can be recovered from ψ and q by the formula

u := ∇⊥ψ =

(
−∂ψ∂y
∂ψ
∂x

)
.(4)

The computational domain considered in this report is the standard [16] rectangular, closed basin
on a β-plane with the y-coordinate increasing northward and the x-coordinate eastward. The center
of the basin is at y = 0, the northern and southern boundaries are at y = ±L, respectively, and
the western and eastern boundaries are at x = 0 and x = L (see Figure 1 in [16]).

We are now ready to nondimensionalize the QGE (1). There are several ways of nondimen-
sionalizing the QGE, based on different scalings and involving different parameters (see standard
textbooks on geophysical fluid dynamics, such as [7, 23, 25, 28]). Since the FE error analysis in this
report is based on a precise relationship among the nondimensional parameters of the QGE, we
present a careful nondimensionalization of the QGE below. We first need to choose a length scale
and a velocity scale – the length scale we choose is L, the width of the computational domain. To
define the velocity scale, we first need to specify the forcing term F in (1a). To this end, we follow
the presentation in Section 14.1.1 in [28] and assume that F is the scaled wind-stress curl at the
top of the ocean:

(5) F =
1

H ρ

(
∂τy

∂x
− ∂τx

∂y

)
,

where H is the depth of the fluid, ρ is the density of the fluid, and τ = (τx, τy) is the wind-stress
at the top of the ocean (see also Section 2.12 and equation (14.3) in [28] and Section 5.4 in [6]),
which is measured in N/m2 (e.g., page 1462 in [16]). To determine the characteristic velocity scale,
we use the Sverdrup balance given in equation (14.20) in [28] (see also Section 8.3 in [6]):

(6) β

∫
vdz =

1

ρ

(
∂τy

∂x
− ∂τx

∂y

)
,

in which the velocity component v is integrated along the depth of the fluid. The Sverdrup balance in
(6) represents the balance between wind-stress (i.e., forcing) and β-effect, which yields the Sverdrup
velocity

(7) U :=
τ0

ρHβL
,

where τ0 is the amplitude of the wind stress. It is easy to check that the Sverdrup velocity defined
in (7) has velocity units. We note that the same Sverdrup velocity is used in equation (8-11) in
[6] and on page 1462 in [16] (the latter has an extra π factor due to the particular wind forcing


