On Growth of Polynomials with Restricted Zeros

Abdullah Mir* and G. N. Parrey
${ }^{1}$ Department of Mathematics, University of Kashmir, Srinagar, 190006, India
${ }^{2}$ Department of Mathematics, Islamia College of Science and Commerce, Srinagar, 190002, India

Received 14 November 2015; Accepted (in revised version) 6 May 2016

Abstract. Let $P(z)$ be a polynomial of degree n which does not vanish in $|z|<k, k \geq 1$. It is known that for each $0 \leq s<n$ and $1 \leq R \leq k$,

$$
M\left(P^{(s)}, R\right) \leq\left(\frac{1}{R^{s}+k^{s}}\right)\left[\left\{\frac{d^{(s)}}{d x^{(s)}}\left(1+x^{n}\right)\right\}_{x=1}\right]\left(\frac{R+k}{1+k}\right)^{n} M(P, 1)
$$

In this paper, we obtain certain extensions and refinements of this inequality by involving binomial coefficients and some of the coefficients of the polynomial $P(z)$.

Key Words: Polynomial, maximum modulus princple, zeros.
AMS Subject Classifications: 30A10, 30C10, 30C15

1 Introduction and statement of results

Let P_{n} be the class of polynomials

$$
P(z)=\sum_{v=0}^{n} a_{v} z^{v}
$$

of degree n, z being a complex variable and $P^{(s)}(z)$ be its $s^{\text {th }}$ derivative. For $P \in P_{n}$, let $M(P, R)=\max _{|z|=R}|P(z)|$. It is well known that

$$
\begin{equation*}
M\left(P^{\prime}, 1\right) \leq n M(P, 1) \tag{1.1}
\end{equation*}
$$

and

$$
\begin{equation*}
M(P, R) \leq R^{n} M(P, 1), \quad R \geq 1 \tag{1.2}
\end{equation*}
$$

[^0]The inequality (1.1) is a famous result of S. Bernstein (for reference, see [9]) whereas the inequality (1.2) is a simple consequence of Maximum Modulus Principle (see [8]). It was shown by Ankeny and Rivlin [1] that if $P \in P_{n}$ and $P(z) \neq 0$ in $|z|<1$, then (1.2) can be replaced by

$$
\begin{equation*}
M(P, R) \leq\left(\frac{R^{n}+1}{2}\right)(P, 1), \quad R \geq 1 . \tag{1.3}
\end{equation*}
$$

Recently, Jain [5] obtained a generalization of (1.3) by considering polynomials with no zeros in $|z|<k, k \geq 1$ and simultaneously have taken into consideration the $s^{\text {th }}$ derivative of the polynomial, $(0 \leq s<n)$, instead of the polynomial itself. More precisely, he proved the following result.

Theorem 1.1. If $P \in P_{n}$ and $P(z) \neq 0$ in $|z|<k, k \geq 1$, then for $0 \leq s<n$,

$$
\begin{equation*}
M\left(P^{(s)}, R\right) \leq \frac{1}{2}\left\{\frac{d^{(s)}}{d R^{(s)}}\left(R^{n}+k^{n}\right)\right\}\left(\frac{2}{1+k}\right)^{n} M(P, 1) \quad \text { for } R \geq k \tag{1.4}
\end{equation*}
$$

and

$$
\begin{equation*}
M\left(P^{(s)}, R\right) \leq\left(\frac{1}{R^{s}+k^{s}}\right)\left[\left\{\frac{d^{(s)}}{d x^{(s)}}\left(1+x^{n}\right)\right\}_{x=1}\right]\left(\frac{R+k}{1+k}\right)^{n} M(P, 1) \quad \text { for } 1 \leq R \leq k \tag{1.5}
\end{equation*}
$$

Equality holds in (1.4) (with $k=1$ and $s=0$) for $P(z)=z^{n}+1$ and equality holds in (1.5) (with $s=1$) for $P(z)=(z+k)^{n}$.

In this paper, we obtain certain extensions and refinements of the inequality (1.5) of the above theorem by involving binomial coefficients and some of the coefficients of polynomial $P(z)$. More precisely, we prove

Theorem 1.2. If $P \in P_{n}$ and $P(z) \neq 0$ in $|z|<k, k>0$, then for $0 \leq s<n$ and $0<r \leq R \leq k$, we have

$$
\begin{align*}
M\left(P^{(s)}, R\right) \leq\{ & \left.\frac{c(n, s) R+\left|\frac{a_{s}}{a_{0}}\right| k^{s+1}}{\left.c(n, s)\left(k^{s+1}+R^{s+1}\right)+\left|\frac{a_{s}}{a_{0}}\right| k^{s+1} R^{s}+R k^{2 s}\right)}\right\}\left[\left\{\frac{d^{(s)}}{d x^{(s)}}\left(1+x^{n}\right)\right\}_{x=1}\right] \\
& \times\left\{\exp \left(n \int_{r}^{R} \frac{t+\frac{1}{n}\left|\frac{a_{0}}{a_{0}}\right| k^{2}}{t^{2}+k^{2}+\frac{2 k^{2}}{n}\left|\frac{a_{1}}{a_{0}}\right| t} d t\right)\right\} M(P, r) \tag{1.6}
\end{align*}
$$

The result is best possible (with $s=1$) and equality in (1.6) holds for $P(z)=(z+k)^{n}$.
Remark 1.1. Since if $P(z) \neq 0$ in $|z|<k, k>0$, then by Lemma 2.5 (stated in Section 2), we have for $0 \leq s<n$,

$$
\begin{equation*}
\frac{1}{c(n, s)}\left|\frac{a_{s}}{a_{0}}\right| k^{s} \leq 1 \tag{1.7}
\end{equation*}
$$

[^0]: *Corresponding author. Email address: mabdullah_mir@yahoo.co.in (A. Mir)

