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Abstract. Let P(z) be a polynomial of degree n which does not vanish in |z|<k, k≥1.
It is known that for each 0≤ s<n and 1≤R≤k,
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dx(s)
(1+xn)

}
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](R+k

1+k

)n
M(P,1).

In this paper, we obtain certain extensions and refinements of this inequality by in-
volving binomial coefficients and some of the coefficients of the polynomial P(z).
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1 Introduction and statement of results

Let Pn be the class of polynomials

P(z)=
n

∑
ν=0

aνzν

of degree n, z being a complex variable and P(s)(z) be its sth derivative. For P∈ Pn, let
M(P,R)=max|z|=R |P(z)|. It is well known that

M(P′,1)≤nM(P,1), (1.1)

and

M(P,R)≤RnM(P,1), R≥1. (1.2)
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The inequality (1.1) is a famous result of S. Bernstein (for reference, see [9]) whereas the
inequality (1.2) is a simple consequence of Maximum Modulus Principle (see [8]). It was
shown by Ankeny and Rivlin [1] that if P∈ Pn and P(z) 6= 0 in |z|< 1, then (1.2) can be
replaced by

M(P,R)≤
(Rn+1

2

)

(P,1), R≥1. (1.3)

Recently, Jain [5] obtained a generalization of (1.3) by considering polynomials with no
zeros in |z|< k, k≥1 and simultaneously have taken into consideration the sth derivative
of the polynomial, (0≤ s<n), instead of the polynomial itself. More precisely, he proved
the following result.

Theorem 1.1. If P∈Pn and P(z) 6=0 in |z|< k, k≥1, then for 0≤ s<n,

M
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)
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{ d(s)

dR(s)
(Rn+kn)

}( 2
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)n
M(P,1) for R≥ k, (1.4)

and

M
(

P(s),R
)

≤
( 1

Rs+ks

)[{ d(s)

dx(s)
(1+xn)

}

x=1

](R+k

1+k

)n
M(P,1) for 1≤R≤ k. (1.5)

Equality holds in (1.4) (with k=1 and s=0) for P(z)= zn+1 and equality holds in (1.5) (with
s=1) for P(z)=(z+k)n .

In this paper, we obtain certain extensions and refinements of the inequality (1.5)
of the above theorem by involving binomial coefficients and some of the coefficients of
polynomial P(z). More precisely, we prove

Theorem 1.2. If P∈Pn and P(z) 6=0 in |z|< k, k>0, then for 0≤ s<n and 0< r≤R≤ k, we
have
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M(P,r). (1.6)

The result is best possible (with s=1) and equality in (1.6) holds for P(z)=(z+k)n .

Remark 1.1. Since if P(z) 6=0 in |z|< k, k>0, then by Lemma 2.5 (stated in Section 2), we
have for 0≤ s<n,
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∣ks ≤1, (1.7)


