Some Inequalities for the Polynomial with S-Fold Zeros at the Origin

Ahmad Zireh ${ }^{1, *}$ and Mahmood Bidkham ${ }^{2}$
${ }^{1}$ Department of Mathematics, Shahrood University of Technology, Shahrood, Iran
${ }^{2}$ Department of Mathematics, University of Semnan, Semnan, Iran

Received 8 July 2015; Accepted (in revised version) 27 October 2015

Abstract

Let $p(z)$ be a polynomial of degree n, which has no zeros in $|z|<1$, Dewan et al. [K. K. Dewan and Sunil Hans, Generalization of certain well known polynomial inequalities, J. Math. Anal. Appl., 363 (2010), pp. 38-41] established $$
\left|z p^{\prime}(z)+\frac{n \beta}{2} p(z)\right| \leq \frac{n}{2}\left\{\left(\left|\frac{\beta}{2}\right|+\left|1+\frac{\beta}{2}\right|\right) \max _{|z|=1}|p(z)|-\left(\left|1+\frac{\beta}{2}\right|-\left|\frac{\beta}{2}\right|\right) \min _{|z|=1}|p(z)|\right\},
$$ for any $|\beta| \leq 1$ and $|z|=1$. In this paper we improve the above inequality for the polynomial which has no zeros in $|z|<k, k \geq 1$, except s-fold zeros at the origin. Our results generalize certain well known polynomial inequalities.

Key Words: Polynomial, s-fold zeros, inequality, maximum modulus, derivative.
AMS Subject Classifications: 30A10, 30C10, 30D15

1 Introduction and statement of results

Let $p(z)$ be a polynomial of degree n, then according to a result known as Bernstein's inequality [3] on the derivative of a polynomial, we have

$$
\begin{equation*}
\max _{|z|=1}\left|p^{\prime}(z)\right| \leq n \max _{|z|=1}|p(z)| . \tag{1.1}
\end{equation*}
$$

The result is best possible and equality holds for the polynomials having all its zeros at the origin.

If the polynomial $p(z)$ has all its zeros in $|z| \leq 1$, then it was proved by Turan [10] that

$$
\begin{equation*}
\max _{|z|=1}\left|p^{\prime}(z)\right| \geq \frac{n}{2} \max _{|z|=1}|p(z)| . \tag{1.2}
\end{equation*}
$$

[^0]With equality for those polynomials which have all their zeros at the origin.
For the class of polynomials having no zeros in $|z|<1$, the inequality (1.1) can be replaced by

$$
\begin{equation*}
\max _{|z|=1}\left|p^{\prime}(z)\right| \leq \frac{n}{2} \max _{|z|=1}|p(z)| . \tag{1.3}
\end{equation*}
$$

The inequality (1.3) was conjectured by Erdös and later proved by Lax [6].
As an extension of the inequality (1.2) Malik [7] proved that if $p(z)$ having all its zeros in $|z| \leq k, k \leq 1$, then

$$
\begin{equation*}
\max _{|z|=1}\left|p^{\prime}(z)\right| \geq \frac{n}{1+k} \max _{|z|=1}|p(z)| . \tag{1.4}
\end{equation*}
$$

Govil [5] improved the inequality (1.4) and proved that if $p(z)$ is a polynomial of degree n having all its zeros in $|z| \leq k, k \leq 1$, then

$$
\begin{equation*}
\max _{|z|=1}\left|p^{\prime}(z)\right| \geq \frac{n}{1+k}\left\{\max _{|z|=1}|p(z)|+\frac{1}{k^{n-1}} \min _{|z|=k}|p(z)|\right\} . \tag{1.5}
\end{equation*}
$$

As a refinement of the inequality (1.4) Aziz and Zargar [2] proved that if $p(z)$ is a polynomial of degree n having all its zeros in $|z| \leq k, k \leq 1$, with s-fold zeros at the origin, then

$$
\begin{equation*}
\max _{|z|=1}\left|p^{\prime}(z)\right| \geq \frac{n+s k}{1+k} \max _{|z|=1}|p(z)|+\frac{n-s}{(1+k) k^{s}} \min _{|z|=k}|p(z)| . \tag{1.6}
\end{equation*}
$$

Recently Dewan and Hans [4] obtained a refinement of inequalities (1.2) and (1.3). They proved that if $p(z)$ is a polynomial of degree n and has all its zeros in $|z| \leq 1$, then for every real or complex number β with $|\beta| \leq 1$,

$$
\begin{equation*}
\min _{|z|=1}\left|z p^{\prime}(z)+\frac{n \beta}{2} p(z)\right| \geq n\left|1+\frac{\beta}{2}\right| \min _{|z|=1}|p(z)|, \tag{1.7}
\end{equation*}
$$

and in the case that $p(z)$ having no zeros in $|z|<1$, they proved that

$$
\begin{align*}
& \max _{|z|=1}\left|z p^{\prime}(z)+\frac{n \beta}{2} p(z)\right| \\
\leq & \frac{n}{2}\left\{\left(\left|1+\frac{\beta}{2}\right|+\left|\frac{\beta}{2}\right|\right) \max _{|z|=1}|p(z)|-\left(\left|1+\frac{\beta}{2}\right|-\left|\frac{\beta}{2}\right|\right) \min _{|z|=1}|p(z)|\right\} . \tag{1.8}
\end{align*}
$$

In this paper, we obtain an improvement and generalizations of the above inequalities. For this purpose we first present the following result which is a generalization and refinement of inequalities (1.5), (1.6) and (1.7).

Theorem 1.1. If $p(z)$ is a polynomial of degree n having all its zeros in $|z| \leq k, k \leq 1$, with s-fold zeros at the origin where $0 \leq s \leq n$, then for every $\beta \in \mathbb{C}$ with $|\beta| \leq 1$ and $|z|=1$,

$$
\begin{equation*}
\left|z p^{\prime}(z)+\beta \frac{n+s k}{1+k} p(z)\right| \geq k^{-n}\left|n+\beta \frac{n+s k}{1+k}\right| \min _{|z|=k}|p(z)| . \tag{1.9}
\end{equation*}
$$

With equality for $p(z)=a z^{n}$ where $a \in \mathbb{C}$.

[^0]: *Corresponding author. Email addresses: azireh@shahroodut.ac.ir, azireh@gmail.com (A. Zireh), mdbidkham@gmail.om (M. Bidkham)

