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Abstract. Let p(z) be a polynomial of degree n, which has no zeros in |z|<1, Dewan
et al. [K. K. Dewan and Sunil Hans, Generalization of certain well known polynomial
inequalities, J. Math. Anal. Appl., 363 (2010), pp. 38–41] established
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for any |β| ≤ 1 and |z|= 1. In this paper we improve the above inequality for the
polynomial which has no zeros in |z|< k, k≥ 1, except s-fold zeros at the origin. Our
results generalize certain well known polynomial inequalities.
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1 Introduction and statement of results

Let p(z) be a polynomial of degree n, then according to a result known as Bernstein’s
inequality [3] on the derivative of a polynomial, we have

max
|z|=1

|p′(z)|≤nmax
|z|=1

|p(z)|. (1.1)

The result is best possible and equality holds for the polynomials having all its zeros at
the origin.

If the polynomial p(z) has all its zeros in |z|≤1, then it was proved by Turan [10] that
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With equality for those polynomials which have all their zeros at the origin.
For the class of polynomials having no zeros in |z|< 1, the inequality (1.1) can be

replaced by
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|p′(z)|≤
n

2
max
|z|=1

|p(z)|. (1.3)

The inequality (1.3) was conjectured by Erdös and later proved by Lax [6].
As an extension of the inequality (1.2) Malik [7] proved that if p(z) having all its zeros

in |z|≤ k, k≤1, then
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1+k
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|p(z)|. (1.4)

Govil [5] improved the inequality (1.4) and proved that if p(z) is a polynomial of degree
n having all its zeros in |z|≤ k, k≤1, then
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As a refinement of the inequality (1.4) Aziz and Zargar [2] proved that if p(z) is a poly-
nomial of degree n having all its zeros in |z| ≤ k, k ≤ 1, with s-fold zeros at the origin,
then
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Recently Dewan and Hans [4] obtained a refinement of inequalities (1.2) and (1.3). They
proved that if p(z) is a polynomial of degree n and has all its zeros in |z| ≤ 1, then for
every real or complex number β with |β|≤1,
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and in the case that p(z) having no zeros in |z|<1, they proved that
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In this paper, we obtain an improvement and generalizations of the above inequalities.
For this purpose we first present the following result which is a generalization and re-
finement of inequalities (1.5), (1.6) and (1.7).

Theorem 1.1. If p(z) is a polynomial of degree n having all its zeros in |z|≤k, k≤1, with s-fold
zeros at the origin where 0≤ s≤n, then for every β∈C with |β|≤1 and |z|=1,
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With equality for p(z)= azn where a∈C.


