On the Approximation of an Analytic Function Represented by Laplace-Stieltjes Transformation

Chhaya Singhal and G. S. Srivastava*

Department of Mathematics, Jaypee Institute of Information Technology, A-10, Sector 62, NOIDA-201307, India

Received 16 April 2015; Accepted (in revised version) 21 May 2015

Abstract. In the present paper, we have considered the approximation of analytic functions represented by Laplace-Stieltjes transformations using sequence of definite integrals. We have characterized their order and type in terms of the rate of decrease of $E_n(F,\beta)$ where $E_n(F,\beta)$ is the error in approximating of the function F(s) by definite integral polynomials in the half plane $Res \le \beta < \alpha$.

Key Words: Laplace-Stieltjes transformation, analytic function, order, type, approximation error. **AMS Subject Classifications**: 30D15, 32A15

1 Introduction

Consider the Laplace-Stieltjes transformation defined by

$$G(s) = \int_0^\infty \exp(-sx)d\alpha(x),\tag{1.1}$$

DOI: 10.4208/ata.2015.v31.n4.6

where $\alpha(x)$ is a function of bounded variation on any finite interval [0,X], $(0 < X < +\infty)$, $s = \sigma + it$, σ and t are real variables. We choose a monotonic increasing sequence of real numbers $\{\lambda_n\}$ satisfying the following conditions:

$$0 = \lambda_1 < \lambda_2 < \lambda_3 < \dots < \lambda_n \uparrow + \infty, \tag{1.2a}$$

$$\lim_{n\to\infty} \sup(\lambda_{n+1} - \lambda_n) = \delta < +\infty, \quad \sup \frac{n}{\lambda_n} = D < +\infty.$$
 (1.2b)

We put

$$K_n^* = \sup_{\lambda_n < x \le \lambda_{n+1}, -\infty < t < +\infty} \left| \int_{\lambda_n}^x e^{-ity} d\alpha(y) \right|.$$

In [7], Yu Jiarong obtained the following Valiron-Knopp-Bohr formula:

^{*}Corresponding author. *Email addresses:* gs.srivastava@jiit.ac.in (G. S. Srivastava), chhaya429@gmail.com (Ch. Singhal)

Theorem 1.1. Suppose that the Laplace-Stieltjes transformation (1.1) satisfies

$$\lim_{n\to\infty}\sup(\lambda_{n+1}-\lambda_n)<+\infty,\quad \lim_{n\to\infty}\sup\frac{\ln n}{\lambda_n}<+\infty,$$

and σ_u^G denotes the abscissa of uniform convergence of (1.1). Then

$$\lim_{n\to\infty} \sup \frac{\ln K_n^*}{\lambda_n} \le \sigma_\mu^G \le \lim_{n\to\infty} \sup \frac{\ln K_n^*}{\lambda_n} + \lim_{n\to\infty} \sup \frac{\ln n}{\lambda_n}.$$
 (1.3)

Suppose that

$$\lim_{n\to\infty} \sup \frac{\ln K_n^*}{\lambda_n} = 0. \tag{1.4}$$

If D=0 then by (1.2b), (1.3) and (1.4), it follows that $\sigma_{\mu}^G=0$ and G(s) is analytic in the right half plane $\sigma>0$. Kong and Yang [8] considered the Laplace-Stieltjes transformations given by (1.1) converging uniformly in the whole complex plane $Re(s)>-\infty$ and studied their growth properties.

In 2012, Luo Xi and Kong Yinying [5] defined Laplace-Stieltjes transformations in a different manner by taking positive exponents in the integral (1.1). Thus they defined Laplace-Stieltjes transformations as given below:

$$F(s) = \int_0^{+\infty} \exp(sy) d\alpha(y), (s = \sigma + it), \tag{1.5}$$

where $\alpha(y)$ satisfies the same conditions as stated earlier and the sequence $\{\lambda_n\}$ satisfies both conditions stated in (1.2b). We put

$$A_n^* = \sup_{\lambda_n < x < \lambda_{n+1}, -\infty < t < +\infty} \left| \int_{\lambda_n}^x e^{ity} d\alpha(y) \right|.$$

A result similar to that of Theorem A can be proved easily for the integral (1.5) also. If the integral in (1.5) converges absolutely in the half plane $Res < \alpha \ (-\infty < \alpha < \infty)$, then it represents an analytic function in $Res < \alpha$ and since (1.2a) holds we have

$$\lim_{n \to \infty} \inf \frac{\ln(A_n^*)^{-1}}{\lambda_n} = \alpha.$$
(1.6)

Definition 1.1. We define maximum modulus, the maximum term and the central index of the function F(s) defined by (1.5) as

$$\begin{split} M(\sigma,F) &= \sup_{-\infty < t < +\infty} |F(\sigma + it)|, \\ M_{\mu}(\sigma,F) &= \sup_{0 < x < +\infty, -\infty < t < +\infty} \left| \int_{0}^{x} e^{sy} d\alpha(y) \right|, s = \sigma + it, \quad \sigma < \alpha, \\ \mu(\sigma,F) &= \max_{1 \le n < N} \left\{ A_{n}^{*} e^{\lambda_{n} \sigma} \right\}, \quad \sigma < \alpha, \\ N(\sigma,F) &= \max\{n; \mu(\sigma,F) = A_{n}^{*} e^{\lambda_{n} \sigma} \}, \end{split}$$