On an Inequality of Pual Turan Concerning Polynomials-II

Abdullah Mir*
Department of Mathematics, University of Kashmir, Hazratbal Srinagar-190006, India

Received 24 March 2015; Accepted (in revised version) 6 April 2015

Abstract

Let $P(z)$ be a polynomial of degree n and for any complex number α, let $D_{\alpha} P(z)=n P(z)+(\alpha-z) P^{\prime}(z)$ denote the polar derivative of the polynomial $P(z)$ with respect to α. In this paper, we obtain inequalities for the polar derivative of a polynomial having all zeros inside a circle. Our results shall generalize and sharpen some well-known results of Turan, Govil, Dewan et al. and others.

Key Words: Polar derivative, polynomials, inequalities, maximum modulus, growth.
AMS Subject Classifications: 30A10, 30C10, 30C15

1 Introduction and statement of results

Let $P(z)$ be a polynomial of degree n and $P^{\prime}(z)$ be its derivative. Then according to the well-known Bernstein's inequality [4] on the derivative of a polynomial, we have

$$
\begin{equation*}
\max _{|z|=1}\left|P^{\prime}(z)\right| \leq n \max _{|z|=1}|P(z)| . \tag{1.1}
\end{equation*}
$$

The equality holds in (1.1) if and only if $P(z)$ has all its zeros at the origin.
For the class of polynomials $P(z)$ having all zeros in $|z| \leq 1$, Turan [11] proved that

$$
\begin{equation*}
\max _{|z|=1}\left|P^{\prime}(z)\right| \geq \frac{n}{2} \max _{|z|=1}|P(z)| . \tag{1.2}
\end{equation*}
$$

The inequality (1.2) is best possible and becomes equality for $P(z)=\alpha z^{n}+\beta$ where $|\alpha|=|\beta|$.
In the literature, there already exists some refinements and generalizations of the inequality (1.2), for example see Aziz and Dawood [3], Govil [5], Dewan and Mir [6], Dewan, Singh and Mir [7], Mir, Dar and Dawood [10] etc.

[^0]Inequality (1.2) was refined by Aziz and Dawood [3] and they proved under the same hypothesis that

$$
\begin{equation*}
\max _{|z|=1}\left|P^{\prime}(z)\right| \geq \frac{n}{2}\left\{\max _{|z|=1}|P(z)|+\min _{|z|=1}|P(z)|\right\} \tag{1.3}
\end{equation*}
$$

As an extension of (1.3), it was shown by Govil [5], that if $P(z)$ has all its zeros in $|z| \leq k$, $k \leq 1$, then

$$
\begin{equation*}
\max _{|z|=1}\left|P^{\prime}(z)\right| \geq \frac{n}{1+k}\left\{\max _{|z|=1}|P(z)|+\frac{1}{k^{n-1}} \min _{|z|=k}|P(z)|\right\} \tag{1.4}
\end{equation*}
$$

For the class of polynomials

$$
P(z)=a_{n} z^{n}+\sum_{v=\mu}^{n} a_{n-v} z^{n-v}, \quad 1 \leq \mu \leq n
$$

of degree n having all its zeros in $|z| \leq k, k \leq 1$, Aziz and Shah [2] proved

$$
\begin{equation*}
\max _{|z|=1}\left|P^{\prime}(z)\right| \geq \frac{n}{1+k^{\mu}}\left\{\max _{|z|=1}|P(z)|+\frac{1}{k^{n-\mu}} \min _{|z|=k}|P(z)|\right\} \tag{1.5}
\end{equation*}
$$

For $\mu=1$, inequality (1.5) reduces to (1.4).
Let $D_{\alpha} P(z)$ denote the polar derivative of the polynomial $P(z)$ of degree n with respect to α, then

$$
D_{\alpha} P(z)=n P(z)+(\alpha-z) P^{\prime}(z)
$$

Recently Dewan, Singh and Mir [7] besides proving some other results, also proved the following interesting generalization of (1.5).

Theorem 1.1. If

$$
P(z)=a_{n} z^{n}+\sum_{v=\mu}^{n} a_{n-v} z^{n-v}, \quad 1 \leq \mu \leq n
$$

is a polynomial of degree n having all its zeros in $|z| \leq k, k \leq 1$, and δ is any complex number with $|\delta| \leq 1$, then for $|z|=1$,

$$
\begin{equation*}
\left|D_{\delta} P(z)\right| \leq n\left(\frac{k^{\mu}+|\delta|}{1+k^{\mu}}\right) \max _{|z|=1}|P(z)|-n\left(\frac{1-|\delta|}{k^{n-\mu}\left(1+k^{\mu}\right)}\right) \min _{|z|=k}|P(z)| \tag{1.6}
\end{equation*}
$$

In this paper, we shall first prove a result which gives certain generalizations of the inequality (1.4) by considering polynomials having all zeros in $|z| \leq k, k \leq 1$ with s-fold zeros at $z=0$. We shall also present a refinement of Theorem 1.1. We first prove the following result.

[^0]: *Corresponding author. Email address: mabdullah_mir@yahoo.co.in (A. Mir)

