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THE UNSTABLE MODE IN THE CRANK-NICOLSON

LEAP-FROG METHOD IS STABLE

NICK HURL, WILLIAM LAYTON, YONG LI, AND MARINA MORAITI

Abstract. This report proves that under the time step condition ∆t|Λ| < 1 (| · | = Euclidean
norm) suggested by root condition analysis and necessary for stability, all modes of the Crank-
Nicolson Leap-Frog (CNLF) approximate solution to the system

du

dt
+Au+ Λu = 0, for t > 0 and u(0) = u0,

where A+AT is symmetric positive definite and Λ is skew symmetric, are asymptotically stable.
This result gives a sufficient stability condition for non-commutative A and Λ, and is proven by
energy methods. Thus, the growth, often reported in the unstable mode, is not due to systems
effects and its explanation must be sought elsewhere.
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1. Introduction

Implicit-explicit (IMEX) time-stepping schemes are often used for solving multi-
physics problems with both stiff and nonstiff components, e.g., advection-diffusion-
reaction equations, Navier-Stokes equations, geophysical flows, surface-groundwater
flows. IMEX schemes treat the stiff term implicitly and the nonstiff term explicitly,
and thus suffer from neither the computational expense of fully implicit schemes
nor the demanding time step requirement of fully explicit methods, e.g., [1, 6, 7, 23].

The Crank-Nicolson Leap-Frog (CNLF) scheme, a classic two-step IMEXmethod,
is frequently used in atmospheric flow simulations [1, 6, 17]. In this article, we prove
asymptotic stability of the unstable or computational mode of the CNLF method
for the system

du

dt
+Au+ Λu = 0, for t > 0 and u(0) = u0,(1)

where As = 1
2 (A + AT ) > 0 (As is symmetric positive definite) and Λ is skew

symmetric. Here u : [0,∞) → Rd and the square, non-commutative, real matrices
A,Λ have compatible dimensions. Under these conditions, the solution to (1) sat-
isfies u(t) → 0 as t→ ∞, so any growth in the approximate solution is a numerics
induced instability. With superscript denoting the time step number, CNLF, the
IMEX combination of Crank-Nicolson and Leap-Frog, is given by: given u0, u1, find
un+1 satisfying for n ≥ 1:

(CNLF)
un+1 − un−1

2∆t
+A

un+1 + un−1

2
+ Λun = 0.
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Root condition analysis of CNLF for the scalar test problem y′+ay+ iλy = 0 leads
to the necessary time step condition essentially from [11]:

(2) ∆t|Λ| < 1, | · | = Euclidean norm.

This condition was recently proven (by discrete energy methods) sufficient for sta-
bility in [15].

However, in practical simulations, difficulties with CNLF’s unstable mode occur.
It is often reported (see for example [5], [12], [19], [2], [18], [22], [10]) that as n→ ∞,

Stable Mode: |un+1 + un−1| → 0,

Unstable Mode: |un+1 − un−1| → ∞.(3)

CNLF is used for many geophysical flow simulations from which experience with
and fixes for the unstable mode are correspondingly large, e.g., [5], [12], [13], [19],
[2], [18], [22], [10]. One mystery is that since CNLF is stable under (2), no growth
is possible in theory and yet time filters to deal with (3) are nearly universal in
practice, [10, 16, 22]. It is an open question to determine if this could be due to the
gap for IMEX methods (e.g., [1], [3], [6], [8], [20], [21]) between necessary conditions
from root condition analysis and sufficient ones for systems, to roundoff errors
exciting the weak instability in LF not sufficiently damped by CN, to imperfect
imposition of (2), to nonlinearities or other unknown causes.

We prove that under (2) the CNLF unstable mode is asymptotically stable for the
system (1). This result, consistent with numerical tests in Section 3, supports the
scenario that growth in the unstable mode is not due to a system effect but rather
due to imperfect imposition of and thus slight violation of (2), or non-autonomous
effects studied in [14], or the combination of roundoff errors breaking skew symmetry
in Λ and near singularity of A.

Theorem 1. Consider (CNLF) for non-commutative A,Λ. Suppose the (neces-
sary) time step condition (2) holds. Then, all modes of CNLF are asymptotically
stable:

un → 0 as n→ ∞ and thus both

un+1 + un−1 → 0 and un+1 − un−1 → 0.

Remark 2. If the matrices A and Λ commute then this follows from standard
root condition analysis. Thus, (2) is a necessary condition for asymptotic stabil-
ity. For single linear multistep methods it is known that root conditions are also
sufficient. However, for implicit-explicit combinations of different methods, such as
CNLF, root conditions are not sufficient. For example, Asher, Ruuth and Wetton
[1] page 811 note “these results provide necessary but not sufficient conditions for
stability...” and Hundsdorfer and Ruuth [7] page 2019 note “Theoretical results are
difficult to obtain if these linearizations do not commute...”. The only general path
(that we take in Section 2) to a sufficient condition for systems is through energy
methods.

2. Three examples of the structure (1)

It is very common for problems in applications to have the structure of (1), a
dissipative perturbation of a conservative system. We give three simple examples.

2.1. Transport plus diffusion. Suppressing spacial discretization, suppose we
take Au = −ϵuxx (typically ϵ is small). Then (1) becomes the evolutionary


