Some Remarks on the Restriction Theorems for the Maximal Operators on \mathbb{R}^{d}

Enji Sato*
Department of Mathematical Sciences, Faculty of Science, Yamagata University, Yamagata, 990-8560, Japan

Received 13 November 2014; Accepted (in revised version) 24 March 2015

Abstract

The aim of this paper is to give a simple proof of the restriction theorem for the maximal operators on the d-dimensional Euclidean space \mathbb{R}^{d}, whose theorem was proved by Carro-Rodriguez in 2012. Moreover, we shall give some remarks of the restriction theorem for the linear and the multilinear operators by Carro-Rodriguez and Rodriguez, too.

Key Words: Weighted L^{p} spaces, Fourier multipliers, multilinear operators.
AMS Subject Classifications: 42B15,42B35

1 Introduction and results

Let p be in $1 \leq p<\infty, w(x)$ a nonnegative 2π periodic function in $L_{l o c}^{1}\left(\mathbb{R}^{d}\right)$ which is called a weight. First we define weighted L^{p} spaces on the d-dimensional Euclidean space \mathbb{R}^{d} or on the d-dimensional torus \mathbb{T}^{d}.
Definition 1.1. Let $1 \leq p<\infty, 0<q<\infty$, and $w(x)$ a non-negative 2π periodic function in $L_{l o c}^{1}\left(\mathbb{R}^{d}\right)$
$L^{p, q}\left(\mathbb{R}^{d}, w\right)=\left\{f \left\lvert\,\|f\|_{L^{p, q}\left(\mathbb{R}^{d}, w\right)}=\left(\int_{0}^{\infty}\left(t w(\{|f|>t\})^{1 / p}\right)^{q} \frac{d t}{t}\right)^{1 / q}<\infty\right.\right\}$,
$L^{p, \infty}\left(\mathbb{R}^{d}, w\right)=\left\{f \mid\|f\|_{L^{p, \infty}\left(\mathbb{R}^{d}, w\right)}=\inf \left\{M \mid t w\left(\left\{x \in \mathbb{R}^{d} \| f(x) \mid>t\right\}\right)^{1 / p}<M\right.\right.$ for $\left.\left.t>0\right\}<\infty\right\}$,
$L^{p, q}\left(\mathbb{T}^{d}, w\right)=\left\{F \left\lvert\,\|F\|_{L^{p, q}\left(\mathbb{R}^{d}, w\right)}=\left(\int_{0}^{\infty}\left(t w(\{|F|>t\})^{1 / p}\right)^{q} \frac{d t}{t}\right)^{1 / q}<\infty\right.\right\}$,
$L^{p, \infty}\left(\mathbb{T}^{d}, w\right)=\left\{F \mid\|F\|_{L^{p, \infty}\left(\mathbb{T}^{d}, w\right)}=\inf \left\{M \mid t w\left(\left\{x \in \mathbb{R}^{d} \| F(x) \mid>t\right\}\right)^{1 / p}<M\right.\right.$ for $\left.\left.t>0\right\}<\infty\right\}$,
where $w(E)=\int_{E} w(x) d x$ for $E \subset \mathbb{R}^{d}$ or $E \subset \mathbb{T}^{d}$.
*Corresponding author. Email address: esato@sci.kj.yamagata-u.ac.jp (E. Sato)

Also let $\left\{\phi_{j}\right\}_{j=1}^{\infty}$ be in $C_{b}\left(\mathbb{R}^{d}\right)$ which is the set of all bounded continuous functions on \mathbb{R}^{d}, and $\phi_{\left.j\right|_{\mathbb{Z}^{d}}}$ the restriction function of ϕ_{j} on the d-dimensional integer space \mathbb{Z}^{d}. When $w(x)=1\left(x \in \mathbb{R}^{d}\right), L^{p}\left(\mathbb{R}^{d}, w\right), L^{p, \infty}\left(\mathbb{R}^{d}, w\right)\left(\right.$ resp. $\left.L^{p}\left(\mathbb{T}^{d}, w\right), L^{p, \infty}\left(\mathbb{T}^{d}, w\right)\right)$ are denoted by $L^{p}\left(\mathbb{R}^{d}\right), L^{p, \infty}\left(\mathbb{R}^{d}\right)$ (resp. $L^{p}\left(\mathbb{T}^{d}\right), L^{p, \infty}\left(\mathbb{T}^{d}\right)$), respectively. Moreover, we define some operators $T_{\phi_{j}}, T^{*}, \widetilde{T_{\phi_{j} \mid Z^{d^{\prime}}}}$ and $\widetilde{T^{*}}$:

Definition 1.2. For

$$
\begin{array}{ll}
T_{\phi_{j}} f(x)=\frac{1}{(2 \pi)^{d}} \int_{\mathbb{R}^{d}} \phi_{j}(\xi) \hat{f}(\xi) e^{i x \tilde{\xi}} d \xi, & T^{*} f(x)=\sup _{j}\left|T_{\phi_{j}} f(x)\right|, \\
\widetilde{T_{\phi_{j \mid \mathbb{Z}^{d}}}} F(x)=\sum_{k \in \mathbb{Z}^{d}} \phi_{j}(k) \hat{F}(k) e^{i k x}, & \widetilde{T^{*}} F(x)=\sup _{j}\left|\widetilde{T_{\phi_{j} \mid \mathbb{Z}^{d}}} F(x)\right|,
\end{array}
$$

where f is in Schwartz spaces $\mathcal{S}\left(\mathbb{R}^{d}\right)$, and F in trigonometric polynomials $P\left(\mathbb{T}^{d}\right)$ on \mathbb{T}^{d},
$\hat{f}(\tilde{\xi})=\frac{1}{(2 \pi)^{d}} \int_{\mathbb{R}^{d}} f(x) e^{-i \xi x} d x$ and $\widehat{F}(k)=\frac{1}{(2 \pi)^{d}} \int_{[0,2 \pi)^{d}} F(x) e^{-i k x} d x\left(=\int_{\mathbb{T}^{d}} F(x) e^{-i k x} d x\right)$.
Now in 1960, K. de Leeuw [5] proved that if T_{ϕ} is bounded on $L^{p}\left(\mathbb{R}^{d}\right)$ for $\phi \in C_{b}\left(\mathbb{R}^{d}\right)$, $\widetilde{T_{\Phi_{\mathbb{Z}^{d}}}}$ is bounded on $L^{p}\left(\mathbb{T}^{d}\right)$. In 1985, Kenig-Tomas [14] showed the same result between T^{*} and $\widetilde{T^{*}}$ for $1<p<\infty$. Moreover, in 1994, Asmar-Berkson-Bourgain [2] (cf. [1,12]) proved that if T^{*} is bounded from $L^{p}\left(\mathbb{R}^{d}\right)$ to $L^{p, \infty}\left(\mathbb{R}^{d}\right), \widetilde{T^{*}}$ is bounded from $L^{p}\left(\mathbb{T}^{d}\right)$ to $L^{p, \infty}\left(\mathbb{T}^{d}\right)$ for $1 \leq p<\infty$. After that, there are many papers related to this property [6,7] (cf. [8,9,17]). Also in 2003, Berkson-Gillispie [3] proved that if T_{ϕ} is bounded on $L^{p}\left(\mathbb{R}^{d}, w\right)$ for $\phi \in C_{b}\left(\mathbb{R}^{d}\right)$ and $1<p<\infty$ with $w \in A_{p}\left(\mathbb{T}^{d}\right), \widehat{T_{\phi \mid Z^{d}}}$ is bounded on $L^{p}\left(\mathbb{T}^{d}, w\right)$, where

$$
\begin{aligned}
A_{p}\left(\mathbb{T}^{d}\right)= & \left\{w(x) \geq 0 \mid w(x) \text { is a } 2 \pi \text { periodic function on } \mathbb{R}^{d}\right. \\
& \text { with } \left.\sup _{Q, \text { cube }}\left(\frac{1}{|Q|} \int_{Q} w(x) d x\right)\left(\frac{1}{|Q|} \int_{Q} w(x)^{-1 /(p-1)} d x\right)^{p-1}<\infty\right\},
\end{aligned}
$$

where $|Q|$ is the Lebesgue measure of $Q \subset \mathbb{T}^{d}$. In 2009, Anderson-Mohanty [1] proved Berkson-Gillispie's result without A_{p} condition. In 2012, Carro-Rodriguez [4] which is summing up to the restriction theorems of multipliers in weighted setting showed that if T^{*} is bounded from $L^{p}\left(\mathbb{R}^{d}, w\right)$ to $L^{p, \infty}\left(\mathbb{R}^{d}, w\right)$ for $1 \leq p<\infty$ with a non-negative 2π periodic function $w(x) \in L_{l o c}^{1}\left(\mathbb{R}^{d}\right), \widetilde{T^{*}}$ is bounded from $L^{p}\left(\mathbb{T}^{d}, w\right)$ to $L^{p, \infty}\left(\mathbb{T}^{d}, w\right)$ (cf. [13]). Their results are proved by applying Kolmogorov's condition with vector valued argument (cf. [10]).

Recently by the same method, Rodriguez [15] gives the analogy with respect to the multilinear operators, whose result is as follows: Let $1 \leq p_{j}<\infty(j=1, \cdots, m)$ for $m \in \mathbb{N}$ with $\frac{1}{p}=\frac{1}{p_{1}}+\cdots+\frac{1}{p_{m}}$, and $w(x), w_{1}(x), \cdots, w_{m}(x) 2 \pi$ periodic non-negative functions. Also let

