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Abstract. In this paper, we prove the (L?,L7)-boundedness of (fractional) Hausdorff
operators with power weight on Euclidean spaces. As special cases, we can obtain
some well known results about Hardy operators.
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1 Introduction

Hausdorff operators (Hausdorff summability methods) play important roles in the study
of one dimensional Fourier analysis, particularly the summability of classical Fourier se-
ries. Modern theory of Hausdorff operators started with the work of Siskakis [30] in com-
plex analysis setting and with the work of Georgakis [16] and Liflyand and Méricz [25]
in the Fourier transform setting. One can see [24] for a brief overview of Hausdorff oper-
ators. Some recent developments for Hausdorff operators can be founded in [1-8,12-15,
20-27,29,30,33]. Now we recall the one-dimensional Hausdorff operator
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where @ is a locally integrable function on (0,00). Liflyand and Méricz [25] proved that
he generated by a function ® € L!(IR) is a bounded linear operator on the real Hardy
space H!(R). Following this, the boundedness of hg was considered in various spaces,
for example, see [3, 20, 26].
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The one-dimensional Hausdorff operator contains the classical Hardy operator  and
its adjoint operator 1* if we choose ®(t) as t 1 x(1,)(t) and x (o 1](t) respectively, i.e.,
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It is well known that Hardy operators are important operators in Harmonic analysis, for
instance, see [18,19]. On the other hand, if we choose ®(t) = a(1—#)*"1x(0,1)(t) for
x=1,2,---, then Hp = C, is called the Cesaro operator of order «. A brief history of the
study of the Cesaro operator can be found in [20].

For multidimensional Hausdorff operators, there are many kinds of definitions [1, 3,
4,16-18,21,22]. One of the interesting definitions of the Hausdorff operators is
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where Q)(y') is an integrable function defined on the unit sphere S"~1. Similar to hg,
Hq ¢ contains the high dimensional Hardy operator H and its adjoint operator H* (see
the below definitions).

Recently, Chen, Fan and Li [5] obtained that if ® is a radial function and 1 <p <oo,
then
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As applications, they obtained the known results about boundedness of Hardy operators
H and H* on LP(R") (see [9,10]). For a general function ®, Wang [31] proved
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In [29], Lin and Sun defined the n-dimensional fractional Hausdorff operator for a
radial function ® as follows
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They gave the sufficient condition on @ about the boundedness of Hg g on LP(|x|7),
where 0 < g <n. If we choose ® as [t|F~"x (1 ) (|t]) and x(o1)([t]), Hosf becomes the
fractional Hardy operator Hg and its adjoint operator Hg respectively, where
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