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Abstract. In this paper, by applying the technique of the sharp maximal function and
the equivalent representation of the norm in the Lebesgue spaces with variable ex-
ponent, the boundedness of the parameterized Littlewood-Paley operators, including
the parameterized Lusin area integrals and the parameterized Littlewood-Paley g∗λ-
functions, is established on the Lebesgue spaces with variable exponent. Furthermore,
the boundedness of their commutators generated respectively by BMO functions and
Lipschitz functions are also obtained.
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1 Introduction and main results

The Littlewood-Paley operators, including Lusin area integrals, Littlewood-Paley g-
functions and g∗λ-functions, play very important roles in harmonic analysis and PDE
(see [1–4]). In [5], Lu and Yang investigated the behavior of Littlewood-Paley oper-
ators in the space CBMOp(Rn). In 2009, Xue and Ding gave weighted estimates for
Littlewood-Paley operators and their commutators (see [6]). In 2013, Wei and Tao proved
Litttleood-Paley operators with rough kernels are bounded on weighted (Lq,Lp)α(Rn)
spaces (see [7]).

In 1960, the parameterized Littlewood-Paley operators were discussed by Hörmander
(see [8]) for the first time. Now, let us review the definitions of the parameterized Lusin
area integral and the parameterized Littlewood-Paley g∗λ-function.

Let Sn−1 denote the unit sphere of R
n equipped with Lebesgue measure dσ(x′) and

ψρ(x)=Ω(x)|x|−n+ρχ{|x|≤1}, where 0<ρ<n and Ω satisfies the following conditions:
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(a) Ω(λx)=Ω(x) for all λ>0;

(b)
∫

Rn Ω(x′)dσ(x′)=0;

(c) Ω∈L1(Sn−1).
Then the parameterized Lusin area integral Sρ and the parameterized Littlewood-

Paley g∗λ-function g
∗,ρ
λ are defined respectively by

Sρ( f )(x)=
(

∫∫

Γa(x)
|ψ

ρ
t ∗ f (y)|2

dydt

tn+1

)1/2

and

g
∗,ρ
λ ( f )(x)=

(

∫∫

R
n+1
+

( t

t+|x−y|

)λn
|ψ

ρ
t ∗ f (y)|2

dydt

tn+1

)1/2
,

where Γ(x)={(t,y)∈R
n+1
+ : |y−x|< t}, λ>1.

In [9], Torchinsky and Wang studied the boundedness of the operators Sρ and g
∗,ρ
λ on

weighted L2(Rn) for ρ= 1 and Ω(x)∈ Lipα(Sn−1) (0< α≤ 1). For general ρ, Sakamoto
and Yabuta considered the Lp boundedness of Sρ and g

∗,ρ
λ in [10]; Wei and Tao given

the boundedness of parameterized Litttlewood-Paley operators with rough kernels on
weighted weak Hardy spaces in [11].

Now let us turn to the introduction of the corresponding m-order commutators of the
parameterized Littlewood-Paley operators above. Let b∈L1

loc(R
n), m∈N, the commuta-

tors [bm,Sρ] and [bm,g
∗,ρ
λ ] are defined respectively by

[bm,Sρ]( f )(x)=
(

∫∫

Γa(x)

∣

∣

∣

1

tρ

∫

|y−x|≤t

Ω(y−z)

|y−z|n−ρ
[b(x)−b(z)]m f (z)dz

∣

∣

∣

2 dydt

tn+1

)
1
2

and

[bm,g
∗,ρ
λ ]( f )(x)

=
(

∫∫

R
n+1
+

( t

t+|x−y|

)λn∣
∣

∣

1

tρ

∫

|y−x|≤t

Ω(y−z)

|y−z|n−ρ
[b(x)−b(z)]m f (z)dz

∣

∣

∣

2 dydt

tn+1

)
1
2
.

In 2007, Ding and Xue established the weak LlogL estimates of the commutators
[bm,Sρ] and [bm,g

∗,ρ
λ ] for b ∈ BMO(Rn) (see [12]). In 2009, Chen and Ding investigated

the characterization of the commutators for the parameterized Littlewood-Paley opera-
tors (see [13, 14]).

On the other hand, Lebesgue spaces with variable exponent Lp(·)(Rn) become one
of the important class function spaces due to the seminal paper [15] by Kováčik and
Rákosnı́k. In the past twenty years, the theory of these spaces was made progress rapid-
ly, and the study of which was widely applied in some fields such as fluid dynamics,
elasticity dynamics, calculus of variations and differential equations with non-standard
growth conditions (see [16–20]). In [21], Cruz-Uribe, Fiorenza, Martell and Pérez stud-
ied the extrapolation theorem which leads the boundedness of some classical operators


