Some L^{γ} Inequalities for the Polar Derivative of a Polynomial

Abdullah Mir^{1,*}, M. Bidkham² and Bilal Dar³

¹ Department of Mathematics, University of Kashmir, Srinagar, 190006, India

² Department of Mathematics, Semnan University, Semnan, Iran

³ Govt. Degree College, Pulwama

Received 5 August 2014; Accepted (in revised version) 28 July 2016

Abstract. In this paper, we consider an operator D_{α} which maps a polynomial P(z) in to $D_{\alpha}P(z) := np(z) + (\alpha - z)P'(z)$, where $\alpha \in \mathbb{C}$ and obtain some L^{γ} inequalities for lucanary polynomials having zeros in $|z| \le k \le 1$. Our results yields several generalizations and refinements of many known results and also provide an alternative proof of a result due to Dewan et al. [7], which is independent of Laguerre's theorem.

Key Words: Polar derivative, polynomials, L^{γ} -inequalities in the complex domain, Laguerre's theorem.

AMS Subject Classifications: 30A10, 30C10, 30C15

1 Introduction

Let P_n be the class of polynomials

$$P(z) = \sum_{\nu=0}^{n} a_{\nu} z^{\nu}$$

of degree *n*. For $P \in P_n$, define

$$\|P\|_{\gamma} := \left\{ \frac{1}{2\pi} \int_{0}^{2\pi} |P(e^{i\theta})|^{\gamma} \right\}^{\frac{1}{\gamma}}, \quad \gamma > 0, \\\|P\|_{\infty} := \max_{|z|=1} |P(z)|, \quad m := \min_{|z|=k} |P(z)| \quad \text{and} \quad m_1 := \min_{|z|=1} |P(z)|.$$

http://www.global-sci.org/ata/

©2017 Global-Science Press

^{*}Corresponding author. *Email addresses:* mabdullah_mir@yahoo.co.in (A. Mir), mbidkham@gmail.com (M. Bidkham), darbilal85@ymail.com (B. Dar)

For fixed μ , $1 \le \mu \le n$, let $P_{n,\mu}$, denote the class of polynomials

$$P(z) = a_n z^n + \sum_{\nu=\mu}^n a_{n-\nu} z^{n-\nu}$$

of degree *n* having all zeros in $|z| \le k, k \le 1$.

If $P \in P_n$, then according to the following well-known Bernstein's inequality (for reference see [5]), we have

$$\|P'\|_{\infty} \le n \|P\|_{\infty}.$$
 (1.1)

Equality holds in (1.1) if and only if P(z) has all its zeros at the origin.

For the class of polynomials $P \in P_n$ having all zeros in $|z| \le 1$, Turán [14] proved that

$$\|P'\|_{\infty} \ge \frac{n}{2} \|P\|_{\infty}.$$
 (1.2)

Inequality (1.2) was refined by Aziz and Dawood [1] and they proved under the same hypothesis that

$$||P'||_{\infty} \ge \frac{n}{2} \Big\{ ||P||_{\infty} + m_1 \Big\}.$$
 (1.3)

Both the inequalities (1.2) and (1.3) are best possible and become equality for polynomials $P(z) = \alpha z^n + \beta$, where $|\alpha| = |\beta|$. As an extension of (1.2), it was shown by Malik [12], that if $P \in P_{n,1}$, then

$$||P'||_{\infty} \ge \frac{n}{1+k} ||P||_{\infty},$$
 (1.4)

where as the corresponding extension of (1.3) and a refinement of (1.4) was given by Govil [9] who under the same hypothesis proved that

$$\|P'\|_{\infty} \ge \frac{n}{1+k} \Big\{ \|P\|_{\infty} + \frac{m}{k^{n-1}} \Big\}.$$
(1.5)

In the literature, there already exist some refinements and generalizations of all the above inequalities, for example see Aziz and Shah [4], Dewan, Mir and Yadav [8], Govil, Rahman and Schemeisser [10], Dewan, Singh and Lal [6], etc.

Aziz and Shah [4] (see also Dewan, Mir and Yadav [8]) generalized inequality (1.5) and proved that, if $P \in P_{n,\mu}$, then

$$\|P'\|_{\infty} \ge \frac{n}{1+k^{\mu}} \Big\{ \|P\|_{\infty} + \frac{m}{k^{n-\mu}} \Big\}.$$
(1.6)

For $\mu = 1$, inequality (1.6) reduces to inequality (1.5).

For a complex number α and for $P \in P_n$, let

$$D_{\alpha}P(z) = nP(z) + (\alpha - z)P'(z).$$