ON DOUBLE SINE AND COSINE TRANSFORMS, LIPSCHITZ AND ZYGMUND CLASSES

Vanda Fülöp and Ferenc Móricz

(University of Szeged, Hungary)

Received Dec. 2, 2010

© Editorial Board of Analysis in Theory & Applications and Springer-Verlag Berlin Heidelberg 2011

Abstract. We consider complex-valued functions $f \in L^1(\mathbf{R}^2_+)$, where $\mathbf{R}_+ := [0, \infty)$, and prove sufficient conditions under which the double sine Fourier transform \hat{f}_{ss} and the double cosine Fourier transform \hat{f}_{cc} belong to one of the two-dimensional Lipschitz classes $\operatorname{Lip}(\alpha, \beta)$ for some $0 < \alpha, \beta \le 1$; or to one of the Zygmund classes $\operatorname{Zyg}(\alpha, \beta)$ for some $0 < \alpha, \beta \le 2$. These sufficient conditions are best possible in the sense that they are also necessary for nonnegative-valued functions $f \in L^1(\mathbf{R}^2_+)$.

Key words: double sine and cosine Fourier transform, Lipschitz class $Lip(\alpha, \beta)$, $0 < \alpha$, $\beta \le 1$, Zygmund class $Zyg(\alpha, \beta)$, $0 < \alpha$, $\beta \le 2$.

AMS (2010) subject classification: 42B10, 26A16, 26B35

1 Known Results: Single Sine and Cosine Transforms

We consider complex-valued functions $f: \mathbf{R}_+ \to \mathbf{C}$ that are integrable in Lebesgue sense over $\mathbf{R}_+ := [0, \infty)$, in symbol: $f \in L^1(\mathbf{R}_+)$. We recall that the sine (Fourier) transform of f is defined by

$$\hat{f}_s(u) := \sqrt{\frac{2}{\pi}} \int_0^\infty f(x) \sin ux dx,$$

while the cosine (Fourier) transform of f is defined by

$$\hat{f}_c(u) := \sqrt{\frac{2}{\pi}} \int_0^\infty f(x) \cos ux dx, \qquad u \in \mathbf{R}.$$

Supported partially by the Program TÁMOP-4.2.2/08/1/2008-0008 of the Hungarian National Development Agency.

Both \hat{f}_s and \hat{f}_c are uniformly continuous on **R** and vanish at infinity. For details, we refer to [6, Ch. 1].

In the cases when we do not distinguish between \hat{f}_s and \hat{f}_c , we simply use the notation \hat{f} . We recall that \hat{f} is said to satisfy the Lipschitz condition of order $\alpha > 0$, in symbol: $\hat{f} \in \text{Lip}(\alpha)$, if

$$|\hat{f}(u+h) - \hat{f}(u)| \le Ch^{\alpha}$$
 for all $u \in \mathbf{R}$ and $h > 0$,

where the constant C does not depend on u and h. Furthermore, \hat{f} is said to satisfy the Zygmund condition of order $\alpha > 0$, in symbol: $\hat{f} \in \text{Zyg}(\alpha)$, if

$$|\hat{f}(u+h) - 2\hat{f}(u) + \hat{f}(u-h)| \le Ch^{\alpha}$$
 for all $u \in \mathbb{R}$ and $h > 0$,

where the constant C does not depend on u and h.

It is well known (see, e.g., [1, Ch. 2] or [7, Ch. 2, §3] that if $\hat{f} \in \text{Lip}(\alpha)$ for some $\alpha > 1$, or if $\hat{f} \in \text{Zyg}(\alpha)$ for some $\alpha > 2$, then $\hat{f} \equiv 0$.

The following four theorems were proved in [4] by the second named author of the present paper.

Theorem A. (i) Let $f : \mathbf{R}_+ \to \mathbf{C}$ be such that $f \in L^1_{loc}(\mathbf{R}_+)$. If for some $0 < \alpha \le 1$,

$$\int_0^s x|f(x)| = O(s^{1-\alpha}) \quad \text{for all} \quad s > 0, \tag{1.1}$$

then $f \in L^1(\mathbf{R}_+)$ and $\hat{f}_s \in \text{Lip}(\alpha)$.

(ii) Let $f : \mathbf{R}_+ \to \mathbf{R}_+$ be such that $f \in L^1(\mathbf{R}_+)$. If $\hat{f_s} \in \text{Lip}(\alpha)$ for some $0 < \alpha \le 1$, then (1.1) holds.

Theorem B. In case $0 < \alpha < 1$, Theorem A remains valid when \hat{f}_s is replaced by \hat{f}_c .

Theorem C. (i) Let $f : \mathbf{R}_+ \to \mathbf{C}$ be such that $f \in L^1_{loc}(\mathbf{R}_+)$. If for some $0 < \alpha \le 2$,

$$\int_{0}^{s} x^{2} |f(x)| = O(s^{2-\alpha}) \quad \text{for all} \quad s > 0,$$
(1.2)

then $f \in L^1(\mathbf{R}_+)$ and $\hat{f}_c \in Zyg(\alpha)$.

(ii) Let $f: \mathbf{R}_+ \to \mathbf{R}_+$ be such that $f \in L^1(\mathbf{R}_+)$. If $\hat{f}_c \in Zyg(\alpha)$ for some $0 < \alpha \le 2$, then (1.2) holds.

Theorem D. In case $0 < \alpha < 2$, Theorem C remains valid when \hat{f}_c is replaced by \hat{f}_s .

Our goal in this paper is to extend these results from single to double sine and cosine transform.