Anal. Theory Appl. Vol. 27, No. 3 (2011), 220–223 DOI10.1007/s10496-011-0220-6

SOME APPLICATIONS OF BP-THEOREM IN APPROXIMATION THEORY

I. Sadeqi

(Sahand University of Technology, Iran)

R. Zarghami

(University of Tabriz, Iran)

Received May 31, 2010

© Editorial Board of Analysis in Theory & Applications and Springer-Verlag Berlin Heidelberg 2011

Abstract. In this paper we apply Bishop-Phelps property to show that if X is a Banach space and $G \subseteq X$ is the maximal subspace so that $G^* = \{x^*\} X^* | x^*(y) = 0; \forall y \in G\}$ is an *L*-summand in X^* , then $L^1(\Omega, G)$ is contained in a maximal proximinal subspace of $L^1(\Omega, X)$.

Key words: Bishop-Phelps theorem, support port proximinality, L-projection

AMS (2010) subject classification: 4 of

In the note we need some definitions and notations which are the following. Let (Ω, Σ, μ) be a measure space with non-negative complete σ -finite measure μ and σ -algebra Σ of μ measurable sets. We denote by $L_P(\Omega, \Sigma, \mu : X) = L_p(\Omega, X)$ the Banach space of all equivalence classes of all Bochner integrable functions $f : \Omega \to X$ with the norm

$$\|f\| = \left(\int_{\Omega} \|f(t)\|^{p} \mathrm{d}\mu\right)^{\frac{1}{p}}; 1 \le p < \infty,$$
$$\|f\|_{\infty} = \operatorname{ess\,sup}_{t \in \Omega} \|f(t)\|; p = \infty.$$

A set *M* of measurable functions $f : \Omega \to X$ is decomposable if for any two elements *f*, *g* in *M* and $E \in \Sigma$, $\chi_E f + \chi_{\Omega \setminus E} g \in M$, where χ_E is the characteristic function of *E*. Let *X* be a real or complex Banach space and *C* be a closed convex subset of *X*. The set of support points of *C* is the collection of all points $z \in C$ for which there exists nontrivial $f \in X^*$ such

that $\sup_{x \in C} |f(x)| = |f(z)|$. Such an f is called support functional. The support point z is said to be exposed, if Re f(x) < Ref(z), for $x(\neq z) \in C$. We denote by Supp C and ΣC the set of support points and support functionals, respectively. Bishop and Phelps^[5] have shown that if C is a closed convex and bounded subset of X then Supp C is dense in the boundary of C and ΣC is dense in X^* . The complex case of the Bishop-Phelps theorem is also studied in [6] and some results are given.

Let *X* be a Banach space and *G* a closed subspace of *X*. The subspace *G* is called proximinal in *X* if for every $x \in X$ there exists at least one $y \in G$ such that

$$||x - y|| = \inf\{||x - z|| : z \in G\}.$$

A linear projection P is called an L-projecton if

 $||x|| = ||Px|| + ||x - Px||; \quad \forall x \in X.$

A closed subspace $Y \subset X$ is called an L – summand if it is the range of an L – projection.

The natural question is that, whether or not $L^1(\Omega, G)$ is protonal in $L^1(\Omega, X)$ if G is proximinal in X [3]. We will show that if G^{\perp} is an L-summand then $L^1(\Omega, G)$ is contained in a maximal proximinal subspace of $L^1(\Omega, X)$.

Theorem 2.1^[4]. If X is a Barlac space and $T \in X^*$, then kerT is a proximinal set in X if and only if T supports some points of the unit ball of X.

Lemma 2.2. Let X be a Banach space and G a support set in X. Suppose $L^1(\Omega, G)$ is a decomposable set. Then each constant function of $L^1(\Omega, G)$ is a support point for $L^1(\Omega, G)$.

Proof. Let $g_0 \in L^1(\Omega, G)$ be a constant function, then there exists a point $x_0 \in G$ such that $g_0(t) = x_0$. Since *G* is a support set, we have

$$\exists T_0 \in X^* \text{ s. t. } \inf_G T_0 = T_0(x_0).$$

We define $F_0: L^1(\Omega, X) \to R$ as follows:

$$F_0(g) = \int_{\Omega} T_0(g(t)) \mathrm{d}\mu.$$

It is obvious that $F_0 \in L^1(\Omega, X)^*$, because if

$$g_n \to g \quad (||g_n - g|| \to 0),$$