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Abstract. We will show bounds for commutators of multilinear fractional integral opera-

tors with some homogeneous kernels.
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In 1999, C. E. Kenig and E. M. Stein[8] initiated the study of multilinear fractional integral

operators defined as

Iα(~f )(x) =
∫

(Rn)m

1

|(x− y1, · · · ,x− ym)|mn−α

m

∏
k=1

fk(yk)d~y

(See [6] or [10] for more about fractional integral). Recently, K. Moen [11]m X. Chen and Q.

Xue[3] developed the weighted theory for it, which was motivated by related research for multi-

linear singular integral in [7] and [9]. In their work the following of weights the for multilinear

fractional integral was established.

Definition 1[11], [3]. Let 1 6 p1, · · · , pm < ∞,
1

p
=

1

p1

+ · · ·+
1

pm

, and q > 0. Suppose that

~ω = (ω1, · · · ,ωm) and each ωi (i = 1, · · · ,m) is a nonnegative function on Rn. Then ~ω ∈ A(~p,q)
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if it satisfies

sup
Q

(

1

|Q|

∫

Q
ν~ω

q

)
1
q m

∏
i=1

(

1

|Q|

∫

Q
ωi

−p′i

)
1

p′
i
< ∞,

where ν~ω =
m

∏
i=1

ωi. If pi = 1,

(

1

|Q|

∫

Q
ω

−p′i
i

)
1

p′
i

is understood as (inf
Q

ωi)
−1.

Furthermore, a weighted norm inequality for multilinear fractional integral operators as be-

low is proved.

Theorem A([11], [3]). Let 0 < α < mn, 1 < p1, · · · , pm < ∞,
1

p
=

1

p1

+ · · ·+
1

pm

and
1

q
=

1

p
−

α

n
. Then ~ω ∈ A(~p,q) if and only if Iα can be extended to a bounded operator

∥

∥Iα(~f )
∥

∥

Lq(ν~ω
q)

6 C
m

∏
i=1

∥

∥ fi

∥

∥

Lpi (ω
pi
i )

. (1)

In [3], besides the above, the authors proved another two results such as Theorem B and C,

by the way of contemplating weighted norm inequalities for multilinear fractional integral with

some homogeneous kernels and Coifman-Rochberg-Weiss commutators of multilinear fractional

integral.

Theorem B[3]. Let 0 < α < mn, 1 6 s′ < p1, · · · , pm < ∞,
1

p
=

1

p1

+ · · ·+
1

pm

and
1

q
=

1

p
−

α

n
. Denote ~ωs′ = (ωs′

1 , · · · ,ωs′

m) and
~p
s′

= (
p1

s′
, · · · ,

pm

s′
). Assume ~ωs′ ∈A

( ~p
s′

, q

s′
)

⋂

A
( ~p

s′
,
qε

s′
)

⋂

A
( ~p

s′
,

q−ε
s′

)
,

where
1

qε
=

1

p
−

α + ε

n
and

1

q−ε
=

1

p
−

α − ε

n
. Then, there exists a constant C > 0 independent

of ~f such that
∥

∥IΩ,α(~f )
∥

∥

Lq(ν~ω
q)

6 C
m

∏
i=1

∥

∥ fi

∥

∥

Lpi (ω
pi
i )

, (2)

where

IΩ,α
~f (x) =

∫

(Rn)m

∏m
i=1 Ωi(x− yi) fi(yi)

|(x− y1, · · · ,x− ym)|mn−α d~y

and each Ωi(x) ∈ Ls(Sn−1) (i = 1, · · · ,m) for some s > 1 is a homogeneous function with degree

zero on Rn, i.e. for any λ > 0 and x ∈ Rn, Ωi(λx) = Ωi(x).

Theorem C[3]. Let 0 < α < mn, 1 < p1, · · · , pm < ∞,
1

p
=

1

p1

+ · · ·+
1

pm

and
1

q
=

1

p
−

α

n
.

For r > 1 with 0 < rα < mn, if ~ωr ∈ A
(~p

r
, q

r
)

and ν~ω
q ∈ A∞, then there exists a constant C > 0

independent of~b and ~f such that

∥

∥I~b,α(~f )
∥

∥

Lq(ν~ω
q)

6 C sup
i

‖bi‖BMO

m

∏
i=1

∥

∥ fi

∥

∥

Lpi (ω
pi
i )

, (3)


