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Abstract. If p(z) is a polynomial of degree n having all its zeros on |z| = k,k ≤ 1, then it

is proved[5] that

max
|z|=1

|p′(z)| ≤
n

kn−1 + kn
max
|z|=1

|p(z)|.

In this paper, we generalize the above inequality by extending it to the polar derivative of a

polynomial of the type p(z) = cnzn +
n

∑
j=µ

cn− jz
n− j, 1 ≤ µ ≤ n. We also obtain certain new

inequalities concerning the maximum modulus of a polynomial with restricted zeros.
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1 Introduction

If p(z) is a polynomial of degree n and p′(z) its derivative, then according to a famous result

known as Bernstein’s inequality (for reference see [2]), we have

max
|z|=1

|p′(z)| ≤ nmax
|z|=1

|p(z)|. (1.1)

The result is sharp and the equality in (1.1) holds for p(z) = λ zn, where |λ | = 1.

For the class of polynomials not vanishing in |z| < k, k ≥ 1, Malik[8] proved

max
|z|=1

|p′(z)| ≤
n

1+ k
max
|z|=1

|p(z)|. (1.2)

The result is sharp and the extremal polynomial is p(z) = (z+ k)n.

While seeking for an inequality analogous to (1.2) for polynomials not vanishing in |z| < k,

k ≤ 1, Govil[5] proved the following
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Theorem A. If p(z) =
n

∑
j=0

c jz
j is a polynomial of degree n having all its zeros on |z| = k,

k ≤ 1, then

max
|z|=1

|p′(z)| ≤
n

kn−1 + kn
max
|z|=1

|p(z)|. (1.3)

Let α be a complex number. If p(z) is a polynomial of degree n, then the polar derivative of

p(z) with respect to the point α , denoted by Dα p(z), is defined by

Dα p(z) = np(z)+ (α − z)p′(z). (1.4)

Clearly Dα p(z) is a polynomial of degree at most n−1 and it generalizes the ordinary derivative

in the sense that

lim
α→∞

[

Dα p(z)

α

]

= p′(z). (1.5)

In this paper, we first prove the following result which is an extension of Theorem A due to

Govil[5] to the polar derivative of a polynomial of the type p(z) = cnzn +
n

∑
j=µ

cn− jz
n− j, 1 ≤ µ ≤ n.

Theorem 1. If p(z) = cnzn +
n

∑
j=µ

cn− jz
n− j, 1 ≤ µ < n, is a polynomial of degree n having

all its zeros on |z| = k, k ≤ 1, then for every real or complex number α with |α | ≥ k, we have

max
|z|=1

|Dα p(z)| ≤
n(|α |+ kµ)

kn−2µ+1 + kn−µ+1
max
|z|=1

|p(z)|. (1.6)

Instead of proving Theorem 1 we prove the following theorem which gives a better bound over

the above theorem. More precisely, we prove.

Theorem 2. If p(z) = cnzn +
n

∑
j=µ

cn− jz
n− j, 1 ≤ µ < n, is a polynomial of degree n having

all its zeros on |z| = k, k ≤ 1, then for every real or complex number α with |α | ≥ k, we have

max
|z|=1

|Dα p(z)| ≤
n(|α |+ Sµ)

kn−2µ+1 + kn−µ+1
max
|z|=1

|p(z)|, (1.7)

where

Sµ =
n|cn|k

2µ + µ |cn−µ |k
µ−1

n|cn|kµ−1 + µ |cn−µ |
. (1.8)

To prove that the bound obtained in the above theorem is better than the bound obtained in

Theorem 1, we show that

Sµ ≤ kµ or
n|cn|k

2µ + µ |cn−µ |k
µ−1

µ |cn−µ |+ n|cn|kµ−1
≤ kµ


