TRIGONOMETRIC APPROXIMATION IN REFLEXIVE ORLICZ SPACES

Ali Guven

(Balikesir University, Turkey)

Received Mar. 24, 2010

© Editorial Board of Analysis in Theory & Applications and Springer-Verlag Berlin Heidelberg 2011

Abstract. The Lipschitz classes $\operatorname{Lip}(\alpha, M)$, $0 < \alpha \le 1$ are defined for Orlicz space generated by the Young function M, and the degree of approximation by matrix transforms of $f \in \operatorname{Lip}(\alpha, M)$ is estimated by $n^{-\alpha}$.

Key words: Lipschitz class, matrix transform, modulus of continuity, Nölund transform, Orlicz space

AMS (2010) subject classification: 41A25, 42A10, 46E30

1 Introduction and the Main Results

A convex and continuous function $M:[0,\infty)\to[0,\infty)$, for which $M(0)=0,\,M(x)>0$ for x>0 and

$$\lim_{x \to 0} \frac{M(x)}{x} = 0, \qquad \lim_{x \to \infty} \frac{M(x)}{x} = \infty$$

is called a Young function. The complementary Young function N of M is defined by

$$N(y) := \max \{xy - M(x) : x > 0\}$$

for $y \ge 0$.

Let M be a Young function. We denote by $\widetilde{L}_M = \widetilde{L}_M([0,2\pi])$ the set of 2π -periodic measurable functions $f: \mathbf{R} \to \mathbf{R}$ such that

$$\int_{0}^{2\pi} M(|f(x)|) \, \mathrm{d}x < \infty.$$

The linear span of \widetilde{L}_M is denoted by $L_M = L_M([0,2\pi])$. Equipped with the norm

$$||f||_{M} := \sup \left\{ \int_{0}^{2\pi} |f(x)g(x)| dx : \int_{0}^{2\pi} N(|g(x)|) dx \le 1 \right\},$$

where N is the complementary function of M, L_M becomes a Banach space, called the Orlicz space generated by M.

The Orlicz spaces are known as the generalization of the Lebesgue spaces; in special case, the Orlicz space generated by the Young function $M_p(x) = x^p/p$, $1 , is isometrically isomorphic to the Lebesgue space <math>L_p$. More general information about Orlicz spaces can be found in [6], [11] and [12].

Let $M^{-1}:[0,\infty)\to[0,\infty)$ be the inverse of the Young function M and let

$$h(t) := \limsup_{x \to \infty} \frac{M^{-1}(x)}{M^{-1}(tx)}, \qquad t > 0.$$

The numbers α_M and β_M defined by

$$lpha_M := \lim_{t o \infty} - rac{\log h\left(t
ight)}{\log t}, \qquad \quad eta_M := \lim_{t o 0^+} - rac{\log h\left(t
ight)}{\log t}$$

are called the lower and upper Boyd indices of the Orlicz space L_M , respectively. It is known that the Boyd indices satisfy

$$0 \le \alpha_M \le \beta_M \le 1$$

and

$$\alpha_N + \beta_M = 1,$$
 $\alpha_M + \beta_N = 1.$

The Orlicz space L_M is reflexive if and only if its Boyd indices are nontrivial, that is $0 < \alpha_M \le \beta_M < 1$ (see, for example [5]).

If $1 \le q < 1/\beta_M \le 1/\alpha_M < p \le \infty$, then $L_p \subset L_M \subset L_q$, where the inclusions being continuous, and hence the relation $L_\infty \subset L_M \subset L_1$ holds. We refer to [1] and [2] for a complete discussion of Boyd indices properties.

The modulus of continuity of the function $f \in L_M$ is defined by

$$\omega(f,\delta)_{M} = \sup_{0 < h < \delta} \|f(\cdot + h) - f\|_{M}, \qquad \delta > 0.$$

Let $0 < \alpha \le 1$. The Lipschitz class Lip (α, M) is defined as

$$\operatorname{Lip}(\alpha, M) = \{ f \in L_M : \omega(f, \delta)_M = O(\delta^{\alpha}), \delta > 0 \}.$$

Let $f \in L^1$ has the Fourier series

$$f(x) \sim \frac{a_0}{2} + \sum_{k=1}^{\infty} (a_k \cos kx + b_k \sin kx).$$
 (1.7)

Denote by $S_n(f)(x)$, $n = 0, 1, \cdots$ the *n*th partial sums of the series (1.7) at the point x, that is,

$$S_n(f)(x) = \sum_{k=0}^n u_k(f)(x),$$