Anal. Theory Appl. Vol. 27, No. 2 (2011), 109–116 DOI10.1007/s10496-011-0109-4

A HYBRID FIXED POINT RESULT FOR LIPSCHITZ HOMOMORPHISMS ON QUASI-BANACH ALGEBRAS

Sh. Rezapour and M. Derafshpour

(Azarbaidjan University of Tarbiat Moallem, Iran)

Received Mar. 16, 2009

© Editorial Board of Analysis in Theory & Applications and Springer-Verlag Berlin Heidelberg 2011

Abstract. We shall generalize the results of [9] about characterization of isomorphisms on quasi-Banach algebras by providing integral type conditions. Also, we shall give some new results in this way and finally, give a result about hybrid fixed point of two homomorphisms on quasi-Banach algebras.

Key words: homomorphism, hybrid fixed point, integral-type condition, p-norm, quasi-Banach algebra

AMS (2010) subject classification: 47H10, 46B03, 47B48

1 Introduction

The stability problem of functional equations originated from a question of Ulam^[12] concerning the stability of group homomorphisms: Let $(G_1, *)$ be a group and (G_2, \diamond, d) be a metric group. Given $\varepsilon > 0$, does there exist $\delta(\varepsilon) > 0$ such that if a mapping $h : G_1 \to G_2$ satisfies the inequality

$$d(h(x * y), h(x) \diamond h(y)) < \delta$$

for all $x, y \in G_1$, then there is a homomorphism $H : G_1 \to G_2$ with $d(h(x), H(x)) < \varepsilon$ for all $x \in G_1$? If the answer is affirmative, we would say that the equation of the homomorphism $H(x * y) = H(x) \diamond H(y)$ is stable. The concept of stability for a functional equation arises when we replace the functional equation by an inequality which acts as a perturbation of the equation. Thus, the stability question of functional equations is that how do the solutions of the inequality differ from those of the given functional equation?

Hyers^[7] gave a first affirmative answer to the question of Ulam for Banach spaces. Let X and Y be Banach spaces. Assume that $f: X \to Y$ satisfies

$$\|f(x+y) - f(x) - f(y)\| \le \varepsilon$$

for all $x, y \in X$ and some $\varepsilon \ge 0$. Then, there exists a unique additive mapping $T : X \to Y$ such that $||f(x) - T(x)|| \le \varepsilon$ for all $x \in X$.

Let X and Y be Banach spaces and $f: X \to Y$ a mapping such that f(tx) is continuous in $t \in \mathbf{R}$ for each fixed $x \in X$. Th. M. Rassias^[10] introduced the following inequality: Assume that there exist constants $\theta \ge 0$ and $p \in [0, 1)$ such that

$$||f(x+y) - f(x) - f(y)|| \le \theta(||x||^p + ||y||^p)$$

for all $x, y \in X$. He proved that there exists a unique **R**-linear mapping $T : X \to Y$ such that

$$||f(x) - T(x)|| \le \frac{2\theta}{2 - 2^p} ||x||^p$$

for all $x \in X$. The above inequality has provided a lot of influence in the development of what is now known as Hyers-Ulam-Rassias stability of functional equations and there are a lot of works in this field. In 2007, Park, Cho and Han^[8] proved the Hyers-Ulam-Rassias stability of functional inequalities associated with Jordan-Von Neumann type additive functional equations. Then, Park and An characterized isomorphisms in quasi-Banach algebras in this way.

On the other hand, Hybrid fixed point theory is an important topic and there are some papers in this field (see for example [3]-[6]). In this paper, we shall generalize the results of [9] about characterization of isomorphisms on quasi-Banach algebras by providing integral type conditions. Also, we shall give some new results in this way and finally give a result about hybrid fixed point of two homomorphisms on quasi-Banach algebras. Here, we recall some basic facts concerning quasi-Banach spaces and some preliminary results.

Definition $1.1^{[2],[11]}$. Let X be a real linear space. A quasi-norm is a real-valued function on X satisfying the following conditions:

(1) $||x|| \ge 0$ for all $x \in X$ and ||x|| = 0 if and only if x = 0.

(2) $||\lambda x|| = |\lambda| \cdot ||x||$ for all $\lambda \in \mathbf{R}$ and all $x \in X$.

(3) There is a constant $K \ge 1$ such that $||x + y|| \le K(||x|| + ||y||)$ for all $x, y \in X$.

The pair $(X, || \cdot ||)$ is called a *quasi-normed* space if $|| \cdot ||$ is a quasi-normed on X.

A quasi-Banach space is a complete quasi-normed space.

Definition $1.2^{[1]}$. Let $(A, ||\cdot||)$ be a quasi-normed space. The quasi-normed space $(A, ||\cdot||)$ is called a *quasi-normed algebra* if A is an algebra and there is a constant K > 0 such that $||xy|| \le K ||x|| \cdot ||y||$ for all $x, y \in A$.

A quasi-Banach algebra is a complete quasi-normed algebra.

Definition 1.3^[9]. A C-linear mapping $H : A \to B$ is called a homomorphism on quasinormed algebras if H(xy) = H(x)H(y) for all $x, y \in A$. If in addition, the mapping $H : A \to B$ is bijective, then the mapping $H : A \to B$ is called an isomorphism on quasi-normed algebras.