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A NOTE ON THE CONVERGENCE OF A CRANK-NICOLSON

SCHEME FOR THE KDV EQUATION

RAJIB DUTTA AND NILS HENRIK RISEBRO

Abstract. The aim of this paper is to establish the convergence of a fully discrete Crank-Nicolson
type Galerkin scheme for the Cauchy problem associated to the KdV equation. The convergence is
achieved for initial data in L2, and we show that the scheme converges strongly in L2(0, T ;L2

loc(R))
to a weak solution for some T > 0. Finally, the convergence is illustrated by a numerical example.
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1. Introduction

In this paper we analyze a fully discrete Crank-Nicolson second order accurate
scheme for the initial value problem associated to the KdV equation

(1)

{
ut + (u

2

2 )x + uxxx = 0, x ∈ R× (0, T )

u(x, 0) = u0(x), x ∈ R,

where T > 0 is fixed, u : R× [0, T ) → R is the unknown, and u0 is the initial data.
This equation originally arose as a model for shallow water waves, but it has

later been used for models of varying phenomena, such as magneto-acoustic waves
in plasmas, lattice waves etc. It has also been widely studied from the purely
mathematical side, the delicate balance between nonlinear convection and disper-
sion allows for a rich family of explicit solutions called solitons. Solitons were
originally discovered by Zabusky and Kruskal using numerical methods [17]. To
obtain explicit, but complicated, formulas for solitons, one can use the Bäcklund
transform. Solitons are localized, meaning that they tend rapidly to a constant for
large |x|, and they interact in a particle like manner.

Despite the fact that solitons were discovered using numerical methods, it is
quite difficult to approximate solutions to the KdV equations numerically. A nu-
merical method must take into account both the nonlinear convection coming from
the term uux and the (hard to compute) dispersive waves originating from uxxx.
When approximating smooth solutions, to the best our knowledge, spectral meth-
ods [9, 13, 11] or discontinuous Galerkin methods [16, 15, 3] most efficiently produce
accurate approximations. These methods are essentially semi-discrete, where the
time variable is kept as a continuous variable, and their fully discrete counterparts
are hard to analyze, see however [9] in which a very efficient fully discrete version
is presented.

Regarding fully discrete methods, a simple first order method (which is a dis-
cretization of the semi-discrete method used by Sjöberg to first give an existence
proof for the Cauchy problem for the KdV equation [12]) is analyzed and shown
to converge to a solution [7]. However in practice this method requires a very
fine grid, and correspondingly large computational effort, to produce acceptable
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solutions. By using a higher order approximation in space and fully implicit time
stepping [5], the efficiency improves slightly, while the resulting scheme is shown
to converge for initial data in L2. The purpose of this note is to analyze a second-
order-in-time version of the scheme presented in [5], and to show that one still has
convergence for general L2 initial data, while in practice the scheme is second order
accurate, and comparable with the second order discontinuous Galerkin scheme of
[6].

We shall now briefly and informally explain our strategy. Define, for the mo-
ment, a weak solution to the KdV equation to be a function u(t, x) such that
u ∈ C1([0,∞);H2(R)) and that for all v ∈ H2(R),

(2) (ut, v) + (uux, v) + (ux, vxx) = 0,

where (·, ·) denotes the usual L2 inner product. We propose a Crank-Nicolson
discretization of this equation. Let ∆t be some small positive number, and set

un ≈ u(n∆t, ·), un+
1
2 = (un+1 + un)/2. Given u0, we define un to be the solution

of

(3)
(
un+1, v

)
+∆t

(
un+

1
2un+

1
2 x, v

)
+∆t

(
un+

1
2 x, vxx

)
= (un, v) ,

for all v ∈ H2(R) and n ≥ 0. Assuming that this equation has a unique solution
un+1, we can choose v = un+1 + un to get

(4)
∥∥un+1

∥∥
L2(R) = ∥un∥L2(R) =

∥∥u0∥∥
L2(R) .

Furthermore, by using a clever trick taken from Kato [10], we can get an á priori H1

bound on un. Let R denote a positive constant, and introduce a smooth function
φ satisfying;

a 1 ≤ φ(x) ≤ 2R+ 2,
b φ′(x) = 1 for |x| < R,
c φ′(x) = 0 for |x| ≥ R+ 1
d 0 ≤ φ′(x) ≤ 1 for all x, and
e
∣∣φ(k)(x)

∣∣ ≤ Cφ(x) for all x and k = 1, 2, 3, and some constant C indepen-
dent of R.

Assuming that un and un+1 are in H2(R), un+
1
2φ is an admissible test function in

(3), testing with this function yields

(5)
1

2

∥∥un+1√φ
∥∥2
L2(R) +∆t

(
un+

1
2un+

1
2 x, u

n+
1
2φ

)
+∆t

(
un+

1
2 x,

(
un+

1
2φ

)
xx

)
=

1

2
∥un√φ∥2L2(R) .

To save space, we write w = un+
1
2 , then(

un+
1
2un+

1
2 x, u

n+
1
2φ

)
= −1

2

∫
R
w2 (wφ)x dx

= −1

3

∫
R
w3φx dx.


