INTEGRABILITY AND L^{1}-CONVERGENCE OF DOUBLE COSINE TRIGONOMETRIC SERIES

J. Kaur and S. S. Bhatia
(Thapar University, India)
Received July 14, 2009
(c) Editorial Board of Analysis in Theory \& Applications and Springer-Verlag Berlin Heidelberg 2011

Abstract

We study here L^{1}-convergence of new modified double cosine trigonometric sum and obtain a new necessary and sufficient condition for L^{1}-convergence of double cosine trigonometric series. Also, the results obtained by Moricz ${ }^{[1],[2]}$ are particular cases of ours.

Key words: L^{1}-convergence, conjugate Dirichlet kernel
AMS (2010) subject classification: 42A20, 42A32

1 Introduction

We consider the double cosine series

$$
\begin{equation*}
f(x, y)=\sum_{j=0}^{\infty} \sum_{k=0}^{\infty} \lambda_{j} \lambda_{k} a_{j k} \cos j x \cos k y \tag{1.1}
\end{equation*}
$$

on the positive quadrant $T^{2}=[0, \pi] \times[0, \pi]$ of the two dimensional torus, where $\lambda_{0}=\frac{1}{2}$ and $\lambda_{j}=1$ for $j=1,2,3, \cdots$ and $\left\{a_{j k}\right\}$ is a double sequence of real numbers.

We denote by

$$
S_{m n}(x, y)=\sum_{j=0}^{m} \sum_{k=0}^{n} \lambda_{j} \lambda_{k} a_{j k} \cos j x \cos k y, \quad m, n \geq 0
$$

the rectangular partial sum of the series (1.1) and $f(x, y)=\lim _{m+n \rightarrow \infty} S_{m n}(x, y)$.
We remind the reader the following classes of coefficient sequences due to [1].

[^0]Definition 1.1 ${ }^{[1]}$. We say that $\left\{a_{j k}\right\}$ belongs to the class $B V_{2}$ if

$$
\begin{equation*}
a_{j k} \rightarrow 0 \quad \text { as } \quad j+k \rightarrow \infty, \tag{1.2}
\end{equation*}
$$

and

$$
\begin{equation*}
\sum_{j=0}^{\infty} \sum_{k=0}^{\infty}\left|\triangle_{11} a_{j k}\right|<\infty, \tag{1.3}
\end{equation*}
$$

where

$$
\triangle_{11} a_{j, k}=a_{j, k}-a_{j+1, k}-a_{j, k+1}+a_{j+1, k+1} .
$$

The condition (1.2) implies that $\left\{a_{j k}\right\}$ is a null sequence while (1.3) implies that $\left\{a_{j k}\right\}$ is a sequence of bounded variation.

Defintion 1.2 ${ }^{[1]}$ A null sequence $\left\{a_{j k}\right\}$ belongs to the class \mathcal{C}_{2} if for every $\varepsilon>0$ there exists $\delta>0$ such that for all $0 \leq m \leq M$ and $0 \leq n \leq N$, we have

$$
\begin{equation*}
C(m, M ; n, N ; \delta):=\iint_{D_{\delta}}\left|\sum_{j=m}^{M} \sum_{k=n}^{N} D_{j}(x) D_{k}(y) \triangle_{11} a_{j k}\right| \mathrm{d} x \mathrm{~d} y \leq \varepsilon \tag{1.4}
\end{equation*}
$$

or

$$
\iint_{D_{\delta}}\left|\sum_{j=m}^{\infty} \sum_{k=n}^{\infty} D_{j}(x) D_{k}(y) \triangle_{11} a_{j k}\right| \mathrm{d} x \mathrm{~d} y \leq \varepsilon, \quad \forall m, n \geq 0
$$

where

$$
D_{\delta}:=T-(\delta, \pi] \times(\delta, \pi]=\{(x, y): 0 \leq x, y \leq \pi \& \min (x, y) \leq \delta\} .
$$

Definition 1.3 $3^{[1]}$. A double sequence $\left\{a_{j k}\right\}$ is said to be quasi-convex if

$$
\begin{equation*}
\sum_{j=0}^{\infty} \sum_{k=0}^{\infty}(j+1)(k+1)\left|\triangle_{22} a_{j k}\right|<\infty . \tag{1.5}
\end{equation*}
$$

Moricz ${ }^{[1]}$ introduced the following modified double cosine trigonometric sum

$$
\begin{equation*}
u_{m n}(x, y)=\sum_{j=0}^{m} \sum_{k=0}^{n} \lambda_{j} \lambda_{k}\left(\sum_{i=j=k}^{m} \sum_{l=k}^{n} \triangle_{11} a_{i l}\right) \cos j x \cos k y \tag{1.6}
\end{equation*}
$$

and studied the L^{1}-convergence of double cosine trigonometric series whose coefficients belong to the class $B V_{2}, \mathrm{C}_{2}$ and the class of quasi-convex coefficients by making use of L^{1}-convergence of these modified double cosine trigonometric sums.

We introduce here the following new modified rectangular partial sums $g_{m n}$ of the series (1.1)

$$
\begin{equation*}
g_{m n}(x, y)=\frac{a_{00}}{2}+\sum_{j=1}^{m} \sum_{k=1}^{n}\left\{\sum_{r=j}^{m} \sum_{l=k}^{n} \triangle_{11}\left(a_{r l} \cos r x \cos l y\right)\right\} . \tag{1.7}
\end{equation*}
$$

[^0]: Supported by the national NSF (10871226) of PRC.

