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Abstract. Parabolic sections were introduced by Huang[1] to study the parabolic Monge-

Ampère equation. In this note, we introduce the generalized parabolic sections P and define

BMO
q
P

spaces related to these sections. We then establish the John-Nirenberg type inequal-

ity and verify that all BMO
q
P

are equivalent for q ≥ 1.
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1 Introduction

In 1996, Caffarelli and Gutiérrez[1] studied the real variable theory related to the Monge-

Ampère equation. They define sections to be a family of convex sets F = {S(x, t) : x∈Rn and t >

0} in Rn satisfying certain axioms of affine invariance. In term of these sections, they set up a

variant of the Calderón-Zygmund decomposition by using the covering lemma and the doubling

condition of a Borel measure µ ; this decomposition is very important in studying the linearized

Monge-Ampère equation[2] . As an application, they defined BMOF(Rn) and showed the John-

Nirenberg type inequality. Hardy space H1
F
(Rn) associated to sections was established by Ding
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and Lin[4]. They also showed that the dual space of H1
F
(Rn) is just the space BMOF(Rn) defined

in [1] and the Monge-Ampère singular integral operator is bounded from H1
F
(Rn) to L1(Rn).

On the other hand, to study the parabolic Monge-Ampère equation, Huang[5] defined the

parabolic sections and proved the Besicovitch type covering lemma and Caldrón-Zygmund de-

composition associated with these sections.

So a natural question arises: is there a theory of Hardy and BMO type spaces associated to

the parabolic sections? In the present note, we want to deal with this problem. More precisely,

we introduce the generalized parabolic sections P and define BMO
q

P
spaces associated to these

sections. We then establish the John-Nirenberg type inequality and verify that all BMO
q

P
are

equivalent for q ≥ 1. We remark that Hardy spaces for the generalized parabolic sections have

been developed in [6].

Now we give the definition and basic properties of the generalized parabolic sections. Sup-

pose ϕ(t) : [0,∞) → [0,∞) is a monotonic increasing function satisfying

ϕ(0) = 0, lim
t→∞

ϕ(t) = ∞, ϕ(2t) ≤Cϕ(t),

where C is a constant depending only on ϕ . Define the generalized parabolic sections by

Qϕ(z,r) = S(x,r)× (t − ϕ(r)/2, t + ϕ(r)/2), where S is the (elliptic) sections. Note that if

ϕ(t) = t, then this definition coincides with that used in [5]. Since we can choose ϕ(t) to be any

polynomial in t with nonnegative coefficients and without constant term, thus our definition of

parabolic sections are more general. Throughout this paper, we will work for a fixed function

ϕ described as above. Thus we use Q(z, t) to denote the generalized parabolic section without

specifying ϕ . The generalized parabolic sections have the following properties.

(A) There exist positive constants K1, K2, K3, ε1 and ε2 with the following property: Given

two sections Q(z0,r0), Q(z,r) with r ≤ r0 and Tp an affine transformation that normalizes

Q(z0,r0), if

Q(z0,r0) ∩ Q(z,r) 6= /0,

then there exists z′ = (x′, t ′) ∈ B(0,K3) such that

B
(

x′,K2(
r
r0

)ε2

)

×
(

t ′− ϕ(r)
2r0

, t ′ + ϕ(r)
2r0

)

⊂ Tp(Q(z,r))

⊂ B
(

x′,K1(
r
r0

)ε1

)

×
(

t ′− ϕ(r)
2r0

, t ′ + ϕ(r)
2r0

)

,
(1.1)

and

Tpz = (T x, t ′) ∈ B

(

x′,
1

2
K2(

r

r0

)ε2

)

×{t ′}.


