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Abstract. This paper is devoted to problems stated by Z. Zhou and F.2089. They con-

cern relations between almost periodic, weakly almostogkécj and quasi-weakly almost

periodic points of a continuous mdpand its topological entropy. The negative answer

follows by our recent paper. But for continuous maps of theriral and other more general

one-dimensional spaces we give more results; in some dasesswer is positive.
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1 Introduction

Let (X,d) be a compact metric spades= [0, 1] the unit interval, an€(X) the set of contin-
uous mapd : X — X. By w(f,x) we denote theo-limit set of x which is the set of limit points
of thetrajectory { f'(x)}i>o of x, wheref' denotes théth iterate off. We consider the set( f)
of weakly almost periodic points of f, andQW( f) of quasi-weakly almost periodic points of f.

They are defined as follows, see [11]:

nN—-1 )
W(f)= {xe X;Ve 3N > 0 such that Zj Xee) (f'(X) >n,vn> O} :
i=

njN—1 )
QW(f) = {xe X;Ve AN > 0,3{n;} such that % Xee) (F'(X) >nj,Vj > O},
i=
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whereB(x, €) is thee-neighbourhood o, xa the characteristic function of a s&fand{n; } an

increasing sequence of positive integers. ¥arX andt > 0, let

W, (ft) = Iinm_jorgf%#{ogj<n;d(x,fj(x))<t}, (1)
Wi(f,t) = limsupl#{0<j<nd(x fl(x) <t}. 2)

Nn—oo

Thus,Wy(f,t) andW(f,t) are thelower andupper Banach density of the set{n € N; f"(x)
B(x,t)}, respectively. In this paper we make of use more conveniefibilons ofW(f) and
QW(f) based on the following lemma.

Lemmal. Lef f € C(X). Then

(i) xeW(f)ifandonlyifWy(f,t) >0, for everyt > 0,

(i) xe QW(f)ifandonlyif Wy (f,t) >0, for everyt > 0.

Proof. ltis easy to see that, for evegy> 0 andN > 0O,

nN—1

% Xaxe) (f'(x)) >n ifand onlyif #0< j<nN;fi(x)eB(xe)} >n. (3)
i=

() If xe W(f) then, for everye > 0 there is arN > 0 such that the condition on the left
side in (3) is satisfied for eveny. Hence, by the condition on the righx(f,&) > 1/N > 0. If
x ¢ W(f) then there is am > 0 such that for everil > 0, there is am > 0 such that the condition
on the left side of (3) is not satisfied. Hence, by the conditia the rightW,(f,t) <1/N — 0
if N — oo, Proof of (ii) is similar.

Obviously,W(f) C QW(f). The properties oV (f) andQW(f) were studied in the nineties
by Z. Zhou et al, see [11] for references. The pointsROf) := QW(f)\W(f) areirregularly
recurrent points, i.e., the point such thatV;(f,t) > 0 for anyt > 0, andWx(f,ty) = O for some
to > 0, see [7]. Denote bia(f) the topological entropy of f and byR(f), UR(f) and AP(f)
the set ofrecurrent, uniformly recurrent andalmost periodic points of f, respectively. Thus,
x € R(f) if for every neighborhoodJ of x, fi(x) € U for infinitely many j € N; x € UR(f) if
for every neighborhood) of x there is aK > 0 such that every intervdh,n+ K] contains a
j € Nwith fi(x) € U; andx € AP(f) if for every neighborhoodJ of x, there is & > 0 such
that £kl (x) € U for everyj € N. Recall thaix € R(f) if and only if x € w(f,x), andx € UR(f)
if and only if cw(f,x) is aminimal set, i.e., a closed set# M C X such thatf (M) =M and no
proper subset oM has this property. Denote lpy(f) the union of allw-limit sets of f. The

next relations follow by definition:

AP(f) CUR(F) CW(f) € QW(f) C R(f) C w(f) ()



