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Abstract. This paper is devoted to problems stated by Z. Zhou and F. Li in2009. They con-

cern relations between almost periodic, weakly almost periodic, and quasi-weakly almost

periodic points of a continuous mapf and its topological entropy. The negative answer

follows by our recent paper. But for continuous maps of the interval and other more general

one-dimensional spaces we give more results; in some cases the answer is positive.
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1 Introduction

Let (X ,d) be a compact metric space,I = [0,1] the unit interval, andC(X) the set of contin-

uous mapsf : X → X . By ω( f ,x) we denote theω-limit set of x which is the set of limit points

of thetrajectory { f i(x)}i≥0 of x, wheref i denotes theith iterate off . We consider the setsW ( f )

of weakly almost periodic points of f , andQW ( f ) of quasi-weakly almost periodic points of f .

They are defined as follows, see [11]:

W ( f ) =

{
x ∈ X ;∀ε ∃N > 0 such that

nN−1

∑
i=0

χB(x,ε)( f i(x)) ≥ n,∀n > 0

}
,

QW ( f ) =

{
x ∈ X ;∀ε ∃N > 0,∃{n j} such that

n jN−1

∑
i=0

χB(x,ε)( f i(x)) ≥ n j,∀ j > 0

}
,
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whereB(x,ε) is theε-neighbourhood ofx, χA the characteristic function of a setA, and{n j} an

increasing sequence of positive integers. Forx ∈ X andt > 0, let

Ψx( f , t) = lim inf
n→∞

1
n#{0≤ j < n;d(x, f j(x)) < t}, (1)

Ψ∗
x( f , t) = limsup

n→∞

1
n#{0≤ j < n;d(x, f j(x)) < t}. (2)

Thus,Ψx( f , t) andΨ∗
x( f , t) are thelower andupper Banach density of the set{n ∈ N; f n(x) ∈

B(x, t)}, respectively. In this paper we make of use more convenient definitions ofW ( f ) and

QW ( f ) based on the following lemma.

Lemma 1. Lef f ∈ C(X). Then

(i) x ∈W ( f ) if and only if Ψx( f , t) > 0, for every t > 0,

(ii) x ∈ QW ( f ) if and only if Ψ∗
x( f , t) > 0, for every t > 0.

Proof. It is easy to see that, for everyε > 0 andN > 0,

nN−1

∑
i=0

χB(x,ε)( f i(x)) ≥ n if and only if #{0≤ j < nN; f j(x) ∈ B(x,ε)} ≥ n. (3)

(i) If x ∈ W ( f ) then, for everyε > 0 there is anN > 0 such that the condition on the left

side in (3) is satisfied for everyn. Hence, by the condition on the right,Ψx( f ,ε) ≥ 1/N > 0. If

x /∈W ( f ) then there is anε > 0 such that for everyN > 0, there is ann > 0 such that the condition

on the left side of (3) is not satisfied. Hence, by the condition on the right,Ψx( f , t) < 1/N → 0

if N → ∞. Proof of (ii) is similar.

Obviously,W ( f )⊆ QW ( f ). The properties ofW ( f ) andQW ( f ) were studied in the nineties

by Z. Zhou et al, see [11] for references. The points inIR( f ) := QW ( f )\W ( f ) areirregularly

recurrent points, i.e., the pointsx such thatΨ∗
x( f , t) > 0 for anyt > 0, andΨx( f , t0) = 0 for some

t0 > 0, see [7]. Denote byh( f ) the topological entropy of f and byR( f ), UR( f ) andAP( f )

the set ofrecurrent, uniformly recurrent andalmost periodic points of f , respectively. Thus,

x ∈ R( f ) if for every neighborhoodU of x, f j(x) ∈ U for infinitely many j ∈ N; x ∈ UR( f ) if

for every neighborhoodU of x there is aK > 0 such that every interval[n,n + K] contains a

j ∈ N with f j(x) ∈ U ; andx ∈ AP( f ) if for every neighborhoodU of x, there is ak > 0 such

that f k j(x) ∈U for every j ∈ N. Recall thatx ∈ R( f ) if and only if x ∈ ω( f ,x), andx ∈UR( f )

if and only if ω( f ,x) is aminimal set, i.e., a closed set /06= M ⊆ X such thatf (M) = M and no

proper subset ofM has this property. Denote byω( f ) the union of allω-limit sets of f . The

next relations follow by definition:

AP( f ) ⊆UR( f ) ⊆W ( f ) ⊆ QW ( f ) ⊆ R( f ) ⊆ ω( f ) (4)


