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Abstract. The purpose of the present paper is to introduce a new sgbofgs—valent

meromorphic functions by using certain integral operatat @ investigate various proper-
ties for this subclass.
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1 Introduction

Let z denote the class of functiorfsof the form:
P

f=5+ Y as, peN={123---}, (1.1)

which are analytic ang—valent in the punctured unit digt* = {ze C: 0 < |z] < 1} =U\ {0}.

For a functionf in the classy , given by(1.1), Aglan et al¥ introduced the following one
parameter families of integral operator

ﬂﬂf(z)—;/z(lo E)C'_ltﬂf-lf(t)ott a>0; peN (1.2)
p _Zp+1|-(a) B gt s P .

Using an elementary integral calculus, it is easy to vehitt
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Also, it is easily verified fron{1.3) that

2(PUf(2) =PI (D) — (1+p)PAF (). (1.4)

a
Definition. Let Z (n,0,u,A) be the class of functions e z which satisfy the following
p p

Paf(z\"  Pa-lf(z) (Paf(2)\"
D{“—”(Tég@) A 500 (:P%g(z)) }”” 49

whereg € 3 , satisfies the following inequality:

inequality:

Pp9(2)
U ——7—5¢>09, 0<d<1zeU, (1.6)
Po9(2
andn,d andyu are real numbers such thak0n,d < 1 andA € Cwith 0 {A} > 0.
To establish our main results we need the following lemmas.

Lemma 1%. LetQ be a set in the complex pla@and let the functiony : C2 — C satisfy

o . 1413
the conditiony(irp,s1) ¢ Q for all real r, 5 < — o

Y(a(2),zd(2)) € Q,ze U, then

. If g is analytic in U with ¢0) = 1 and

O0{q(z)} >0(ze V).
Lemma 2. If qis analytic in U with ¢0) = 1, and if A € C\{0} with 0{A} > 0, then
0{a(2)+Azd(2)} > a, 0<a<l1
implies
0{a@)} > a+(1—-a)(2y-1),
wherey is given by
1
y=vO ) = [ (@70
0
which is increasing function ofl {A } and% < y< 1 The estimate is sharp in the sense that the
bound cannot be improved.

For real or complex numbeb andc(c#0,—1,-2,---), the Gaussian hypergeometric
function is defined by
abz al@a+1).bb+1) 7

2F1(a,b;c;z):1+7ﬂ+ St D) z+---. (1.7)

We note that the serigd.9) converges absolutely fare U and hence represents an analytic
function inU (see, for details, [7, Ch. 14]Each of the identities (asserted by Lemma 3 below)
is fairly well known ( cf., e.g., [7, Ch. 14]).



