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Abstract. The purpose of the present paper is to introduce a new subclass of p−valent
meromorphic functions by using certain integral operator and to investigate various proper-
ties for this subclass.
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1 Introduction

Let ∑
p

denote the class of functionsf of the form:

f (z) =
1
zp +

∞

∑
k=1−p

akz
k, p∈ N = {1,2,3, · · · }, (1.1)

which are analytic andp−valent in the punctured unit discU∗ = {z∈ C : 0 < |z| < 1}=U\{0} .

For a functionf in the class∑p given by(1.1), Aqlan et al.[1] introduced the following one

parameter families of integral operator

P
α
p f (z) =

1
zp+1Γ(α)

∫ z

0

(

log
z
t

)α−1
tα−1 f (t)dt, α > 0; p∈ N (1.2)

Using an elementary integral calculus, it is easy to verify that

P
α
p f (z) =

1
zp +

∞

∑
k=1−p

(

1
k+ p+1

)α
akz

k, α ≥ 0; p∈ N. (1.3)
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Also, it is easily verified from(1.3) that

z
(

P
α
p f (z)

)′

= P
α−1
p f (z)− (1+ p)Pα

p f (z) . (1.4)

Definition. Let
α

∑
p

(η ,δ ,µ ,λ ) be the class of functionsf ∈∑
p

which satisfy the following

inequality:

ℜ

{

(1−λ )

(

Pα
p f (z)

Pα
pg(z)

)µ

+ λ
Pα−1

p f (z)

Pα
pg(z)

(

Pα
p f (z)

Pα
pg(z)

)µ}

> η , (1.5)

whereg∈ ∑p satisfies the following inequality:

ℜ
{

Pα
pg(z)

P
α−1
p g(z)

}

> δ , 0≤ δ < 1,z∈U, (1.6)

andη ,δ andµ are real numbers such that 0≤ η ,δ < 1 andλ ∈ C with ℜ{λ} > 0.

To establish our main results we need the following lemmas.

Lemma 1[5]. LetΩ be a set in the complex planeC and let the functionψ : C2 → C satisfy

the conditionψ(ir2,s1) /∈ Ω for all real r2,s1 ≤−
1+ r2

2

2
. If q is analytic in U with q(0) = 1 and

ψ(q(z),zq′(z)) ∈ Ω,z∈U, then

ℜ{q(z)} > 0 (z∈U).

Lemma 2[6]. If q is analytic in U with q(0) = 1, and if λ ∈C\{0} with ℜ{λ} > 0, then

ℜ{q(z)+ λzq′(z)} > α , 0≤ α < 1

implies

ℜ{q(z)} > α +(1−α)(2γ −1),

whereγ is given by

γ = γ(ℜ{λ}) =
∫ 1

0
(1+ tℜ{λ})−1dt

which is increasing function ofℜ{λ} and 1
2 ≤ γ < 1. The estimate is sharp in the sense that the

bound cannot be improved.

For real or complex numbersa,b andc(c 6= 0,−1,−2, · · · ) , the Gaussian hypergeometric

function is defined by

2F1(a,b;c;z) = 1+
a.b
c

z
1!

+
a(a+1).b(b+1)

c(c+1)

z2

2!
+ · · · . (1.7)

We note that the series(1.9) converges absolutely forz∈ U and hence represents an analytic

function inU (see, for details, [7, Ch. 14]). Each of the identities (asserted by Lemma 3 below)

is fairly well known ( cf., e.g., [7, Ch. 14 ]).


