WEIGHTED ESTIMATES FOR MULTIVARIATE HAUSDORFF OPERATORS

Yanling Sun and Yinsheng Jiang

(Xinjiang University, China)

Received Apr. May 25, 2009; Revised June 6, 2012

Abstract. In this paper, some weighted estimates for the multivariate Hausdorff operators are obtained. It is proved that the multivariate Hausdorff operators are bounded on L^p spaces with power weights, which is based on the boundedness of multivariate Hausdorff operators on Herz spaces, and are bounded on weighted L^p spaces with the weights satisfying the homogeneity of degree zero.

Key words: multivariate Hausdorff operator, weighted L^p space, Herz space

AMS (2010) subject classification: 42B25, 42B35

1 Introduction

The notion of the Hausdorff operator with respect to a positive measure on the unit interval [0,1] is introduced by Hardy in [1]. The operator with respect to a complex measure in the real line **R** is defined and studied by Brown and Móricz in [2]. Following that, the multivariate Hausdorff operator with respect to complex Borel measures on **R**^{*n*} is introduced in a more general framework in [3].

Let μ be a σ -finite complex Borel measure on \mathbb{R}^n and c be a Borel measurable function on \mathbb{R}^n , which is nonzero μ -a.e. Assume that $\mathcal{A} := [a_{jk}]$ is an $n \times n$ matrix whose entries $a_{jk} : \mathbb{R}^n \to \mathbb{C}$ are all Borel measurable functions and such that \mathcal{A} is nonsingular μ -a.e. For a measurable complex valued function f on \mathbb{R}^n , the multivariate Hausdorff operator $\mathcal{H} = \mathcal{H}(\mu, c, \mathcal{A})$ is defined

Supported by NNSF of China (10861010, 11161044).

Corresponding author: Yinsheng Jiang

by:

$$\mathcal{H}f(x) := \int_{\mathbf{R}^n} c(s) f(\mathcal{A}(s)x) \mathrm{d}\mu(s).$$
(1.1)

The operator \mathcal{H}^* adjoint to $\mathcal H$ is given by

$$\mathcal{H}^*f(x) := \int_{\mathbf{R}^n} c(s) |\det \mathcal{A}^{-1}(s)| f(\mathcal{A}^{-1}(s)x) \mathrm{d}\mu(s).$$
(1.2)

Both the above two integrals on the right hand side exist as Lebesgue-Stieltjes integrals [4,5]. It is obvious that \mathcal{H}^* is also a Hausdorff operator corresponding to the triple $\mu(s), c(s) |\det \mathcal{A}^{-1}(s)|$, $\mathcal{A}^{-1}(s)$, that is

$$\mathcal{H}^* = \mathcal{H}(\mu, c | \det \mathcal{A}^{-1} |, \mathcal{A}^{-1}).$$
(1.3)

In [3], Brown and Móricz obtained the boundedness of the multivariate Hausdorff operator on $L^p(\mathbf{R}^n)$:

Theorem A. If μ is a complex measure on \mathbb{R}^n and

$$k_p := \int_{\mathbf{R}^n} |c(s)| |\det \mathcal{A}^{-1}(s)|^{\frac{1}{p}} \mathrm{d}|\mu|(s) < \infty$$
 (1.4)

for some $1 \le p \le \infty$, then the Hausdorff operator $\mathcal{H} = \mathcal{H}(\mu, c, \mathcal{A})$ defined in (1.1) is bounded on $L^p(\mathbb{R}^n)$:

$$\|\mathcal{H}f\|_p \le k_p ||f||_p, \tag{1.5}$$

where $|\mu|$ is the total variation of μ .

In [6], Móricz proved that the multivariate Hausdorff operator is bounded on the real Hardy space $H^1(\mathbf{R}^n)$ and BMO(\mathbf{R}^n).

In this paper, we will generalize some results in [3] to the weighted L^p space and obtain some useful estimates for multivariate Hausdorff operators.

Note that the Herz space is a natural generalization of the L^p space with power weights (see [7]). We will firstly consider the boundedness of the multivariate Hausdorff operator on the Herz space. As a direct corollary of it, we can obtain the estimates for the operator on the L^p space with power weights. Next, we will estimate the multivariate Hausdorff operator on the weighted L^p space, where the weight functions are homogeneous of degree zero.

2 Main Results

Assume $1 \le p \le \infty$ and denote the exponent conjugate to p by p^* , that is, let $\frac{1}{p} + \frac{1}{p^*} = 1$ with the agreement that $\frac{1}{\infty} = 0$. Let $k \in \mathbb{Z}$, $B_k = \{x \in \mathbb{R}^n : |x| \le 2^k\}$, $D_k = B_k \setminus B_{k-1}$, and $\chi_k = \chi_{D_k}$ is the characteristic function of D_k .