STANCU POLYNOMIALS BASED ON THE Q-INTEGERS

Xueyan Xiang
(Lishui University, China)

Received Mar. 18, 2011

Abstract

A new generalization of Stancu polynomials based on the q-integers and a nonnegative integer s is firstly introduced in this paper. Moreover, the shape-preserving and convergence properties of these polynomials are also investigated.

Key words: Stancu polynomial, q-integer, q-derivative, shape-preserving property, convergence rate, modulus of continuity
AMS (2010) subject classification: 41 A 10

1 Introduction

In 1981 Stancu proposed a kind of generalized Bernstein polynomials, namely Stancu polynomials, which was defined as:

Definition ${ }^{[1]}$. Let s be an integer and $0 \leq s<\frac{n}{2}$, for $f \in C[0,1]$,

$$
\begin{equation*}
L_{n, s}(f, x)=\sum_{k=0}^{n} f\left(\frac{k}{n}\right) b_{n, k, s}(x) \tag{1.1}
\end{equation*}
$$

where

$$
b_{n, k, s}(x)= \begin{cases}(1-x) p_{n-s, k}(x), & 0 \leq k<s \\ (1-x) p_{n-s, k}(x)+x p_{n-s, k-s}(x), & s \leq k \leq n-s \\ x p_{n-s, k-s}(x), & n-s<k \leq n\end{cases}
$$

and $p_{j, k}(x)$ are the base functions of Bernstein polynomials.
It is not difficult to see that for $s=0,1$ the Stancu polynomials are just the classical Bernstein polynomials. For $s \geq 2$, these polynomials possess many remarkable properties, which have made them an area of intensive research (see $[2,3,4,5]$).

Throughout this paper we employ the following notations of q-Calculus. Let $q>0$. For each nonnegative integer k, the q-integer $[k]$ and the q-factorial $[k]$! are defined by

$$
[k]= \begin{cases}\frac{1-q^{k}}{1-q}, & q \neq 1 \\ k, & q=1\end{cases}
$$

$$
[k]!= \begin{cases}{[k][k-1] \cdots[1],} & k \geq 1 \\ 1, & k=0\end{cases}
$$

For $n, k, n \geq k \geq 0, q$-binomial coefficients are defined naturally as

$$
\left[\begin{array}{l}
n \\
k
\end{array}\right]=\frac{[n]!}{[k]![n-k]!}
$$

Now let's introduce a new generalization of Stancu polynomials as below.
Definition 2. Let s be an integer and $0 \leq s<\frac{n}{2}, q>0, n>0$, for $f \in C[0,1]$,

$$
\begin{equation*}
L_{n, s}(f, q ; x)=\sum_{k=0}^{n} f\left(\frac{[k]}{[n]}\right) b_{n, k, s}(q ; x) \tag{1.2}
\end{equation*}
$$

where

$$
b_{n, k, s}(q ; x)= \begin{cases}\left(1-q^{n-k-s} x\right) p_{n-s, k}(q ; x), & 0 \leq k<s \\ \left(1-q^{n-k-s} x\right) p_{n-s, k}(q ; x)+q^{n-k} x p_{n-s, k-s}(q ; x), & s \leq k \leq n-s \\ q^{n-k} x p_{n-s, k-s}(q ; x), & n-s<k \leq n\end{cases}
$$

and

$$
p_{n-s, k}(q ; x)=\left[\begin{array}{c}
n-s \\
k
\end{array}\right] x^{k} \prod_{l=0}^{n-s-k-1}\left(1-q^{l} x\right), \quad k=0,1, \cdots, n-s
$$

(agree on $\prod_{l=0}^{0}=1$).
It is worth mentioning that the q-Stancu polynomials defined as (1.2) differ essentially from the q-Stancu polynomials in [6]. To get their q-Stancu polynomials in [6] the authors just generalized the control points of the Stancu polynomials based on the q-integers leaving alone the basis functions. While in our q-Stancu polynomials both the control points and the basis functions are the q-analogue of those in Stancu polynomials. As a result, it is not a strange thing that these two q-Stancu polynomials behave quite differently properties, especially in the approximation problem.

It can be easily verified that in case $q=1, L_{n, s}(f, q ; x)$ reduce to the Stancu polynomials and in case $s=0,1, L_{n, s}(f, q ; x)$ coincide with the q-Bernstein polynomials which are defined by Phillips in [7] and have been intensively investigated during these years (see [8-12]).

By some direct calculations, one can get the following two representations: for $f \in C[0,1]$, an integers and $0 \leq s<\frac{n}{2}$,

$$
\begin{equation*}
L_{n, s}(f, q ; x)=\sum_{k=0}^{n-s}\left\{\left(1-q^{n-k-s} x\right) f\left(\frac{[k]}{[n]}\right)+q^{n-k-s} x f\left(\frac{[k+s]}{[n]}\right)\right\} p_{n-s, k}(q ; x) \tag{1.3}
\end{equation*}
$$

