ON THE ZEROS OF A CLASS OF POLYNOMIALS AND RELATED ANALYTIC FUNCTIONS

A. Aziz
and
B. A. Zargar
(University of Kashmir, Srinagar)

Received Mar. 24, 2012; Revised Apr. 10, 2012

Abstract

In this paper we prove some interesting extensions and generalizations of EnestromKakeya Theorem concerning the location of the zeros of a polynomial in a complex plane. We also obtain some zero-free regions for a class of related analytic functions. Our results not only contain some known results as a special case but also a variety of interesting results can be deduced in a unified way by various choices of the parameters.

Key words: zeros of a polynomial, bounds, analytic functions, moduli of zeros
AMS (2010) subject classification: 30C10, 30C15

1 Introduction and Statement of Results

The following well-known result is due to Enestrom and Kakeya ${ }^{[7]}$.
Theorem A. If $P(z)=a_{n} z^{n}+a_{n-1} z^{n-1}+\cdots \cdots+a_{1} z+a_{0}$ is a polynomial of degree n, such that $a_{n} \geq a_{n-1} \geq \cdots \cdots \geq a_{1} \geq a_{0}>0$, then $P(z)$ has no zeros in $|z|<1$.

With the help of Theorem A, one gets the following equivalent form of Enestrom-Kakeya Theorem by considering the polynomial $z^{n} P(1 / z)$.

Theorem B. If

$$
P(z)=a_{n} z^{n}+a_{n-1} z^{n-1}+\cdots \cdots+a_{1} z+a_{0}
$$

is a polynomial of degree n, such that

$$
a_{n} \geq a_{n-1} \geq \cdots \cdots \geq a_{1} \geq a_{0} ; \quad a_{0}>0
$$

then $P(z)$ has no zeros in $|z|<1$.
In the literature ${ }^{[1,4-10]}$, there already exist some extensions and generalizations of EnestromKakeya Theorem. Aziz and Zarger ${ }^{[3]}$ relaxed the hypothesis of Theorem A in several ways and
have proved some extensions and generalizations of this result. As a generalization of EnestromKakeya Theorem, they proved:

Theorem C. If $P(z)=a_{n} z^{n}+a_{n-1} z^{n-1}+\cdots \cdots+a_{1} z+a_{0}$ is a polynomial of degree n, such that for some $k \geq 1$

$$
\begin{equation*}
k a_{n} \geq a_{n-1} \geq \cdots \cdots \geq a_{1} \geq a_{0}>0 \tag{1}
\end{equation*}
$$

then $P(z)$ has all its zeros in the disk $|z+k-1| \leq k$.
Remark 1. Since the circle $|z+k-1| \leq k$ is contained in the circle $|z| \leq 2 k-1$, it follows from Theorem C that all the zeros of $P(z)=a_{n} z^{n}+a_{n-1} z^{n-1}+\cdots+a_{1} z+a_{0}$, satisfying (I) lie in the circle.

$$
\begin{equation*}
|z| \leq 2 k-1 . \tag{2}
\end{equation*}
$$

Aziz and Mohammad ${ }^{[2]}$ have studied the zeros of a class of related analytic functions and among other things have obtained.

Theorem D. Let $f(z)=\sum_{j=0}^{\infty} a_{j} z^{j} \neq 0$ be analytic in $|z| \leq t$. If $\left|\arg a_{j}\right| \leq \alpha \leq \pi / 2, j=$ $0,1,2, \cdots$ and for some finite non-negative integer k,

$$
\left|a_{0}\right| \leq t\left|a_{1}\right| \leq \cdots \leq t^{k}\left|a_{k}\right| \geq t^{k+1}\left|a_{k+1}\right| \geq \cdots,
$$

then $f(z)$ does not vanish in

$$
|z| \leq \frac{t}{\left.\left(2 t^{k}\left|\frac{a_{k}}{a_{0}}\right|-1\right) \cos \alpha+\sin \alpha+\frac{2 \sin \alpha}{\left|a_{0}\right|}\left|\sum_{j=0}^{\infty} t^{j}\right| a_{j} \right\rvert\,}
$$

The aim of this paper is to present some more extensions and generalizations of EnestromKakeya Theorem. We also study the zeros of a class of related analytic functions. We start by presenting the following interesting generalization of Theorem C.

Theorem 1. If $P(z)=a_{n} z^{n}+a_{n-1} z^{n-1}+\cdots \cdots+a_{1} z+a_{0}$ is a polynomial of degree n. If for some real number $\rho \geq 0$, such that

$$
\begin{equation*}
\rho+a_{n} \geq a_{n-1} \geq \cdots \cdots \geq a_{1} \geq a_{0}>0 \tag{3}
\end{equation*}
$$

then $P(z)$ has all its zeros in

$$
\begin{equation*}
\left|z+\frac{\rho}{a_{n}}\right| \leq 1+\frac{\rho}{a_{n}} . \tag{4}
\end{equation*}
$$

Remark 2. Theorem C is a special case of Theorem 1 for the choice of $\rho=(k-1) a_{n}$, where $k \geq 1$. Applying Theorem 1 to polynomial $P(t z)$ we obtain the following result :

