L^{p} INEQUALITIES AND ADMISSIBLE OPERATOR FOR POLYNOMIALS

M. Bidkham, H. A. Soleiman Mezerji

(Semnan University, Iran)
A. Mir
(University of Kashmir, India)
Received Aug. 5, 2011

Abstract

Let $p(z)$ be a polynomial of degree at most n. In this paper we obtain some new results about the dependence of $$
\left\|p(R z)-\beta p(r z)+\alpha\left\{\left(\frac{R+1}{r+1}\right)^{n}-|\beta|\right\} p(r z)\right\|_{s}
$$ on $\|p(z)\|_{s}$ for every $\alpha, \beta \in \mathbf{C}$ with $|\alpha| \leq 1,|\beta| \leq 1, R>r \geqslant 1$, and $s>0$. Our results not only generalize some well known inequalities, but also are variety of interesting results deduced from them by a fairly uniform procedure.

Key words: L^{p} inequality polynomials, Rouche's theorem, admissible operator
AMS (2010) subject classification: 39B82, 39B52, 46H25

1 Introduction and Statement of Results

Let P_{n} be the class of all complex polynomials

$$
p(z)=\sum_{j=0}^{n} a_{j} z^{j}
$$

of degree at most n and $p^{\prime}(z)$ its derivative. For $p \in P_{n}$, define

$$
\|p(z)\|_{s}:=\left\{\frac{1}{2 \pi} \int_{0}^{2 \pi}\left|p\left(e^{i \theta}\right)\right|^{s}\right\}^{\frac{1}{s}}, \quad 1 \leq s<\infty
$$

and

$$
\|p(z)\|_{\infty}:=\max _{|z|=1}|p(z)| .
$$

According to a famous result Known as Bernstein's inequality ${ }^{[4]}$, we have

$$
\begin{equation*}
\left\|p^{\prime}(z)\right\|_{\infty} \leq n\|p(z)\|_{\infty} \tag{1}
\end{equation*}
$$

Also concerning the maximum modulus of $p(z)$ on $|z|=R>1$, we have

$$
\begin{equation*}
\|p(R z)\|_{\infty} \leq R^{n}\|p(z)\|_{\infty} \tag{2}
\end{equation*}
$$

(for reference see [11]). Zygmund ${ }^{[13]}$ has shown

$$
\begin{equation*}
\left\|p^{\prime}(z)\right\|_{s} \leq n\|p(z)\|_{s}, \quad s \geqslant 1 \tag{3}
\end{equation*}
$$

whereas we can deduce the following inequality by applying a result of Hardy ${ }^{[9]}$,

$$
\begin{equation*}
\|p(R z)\|_{s} \leq R^{n}\|p(z)\|_{s}, \quad R>1, \quad s>0 \tag{4}
\end{equation*}
$$

Also Arestov ${ }^{[1]}$ proved that (3) remains true for $0<s<1$ as well. It is clear that the inequalities (1) and (2) can be obtained by letting $s \longrightarrow \infty$ in the inequalities (3) and (4) respectively. If we restrict ourselves to the class of polynomials having no zeros in $|z|<1$, the inequalities (3) and (4) can be improved. In fact, it was shown by De-Bruijn ${ }^{[6]}$ for $s \geqslant 1$ and Rahman and Schmeisser ${ }^{[12]}$ extended it for $0<s<1$ that if $p(z)$ is a polynomial of degree n having no zeros in $|z|<1$, the inequality (3) can be replaced by

$$
\begin{equation*}
\left\|p^{\prime}(z)\right\|_{s} \leq n \frac{\|p(z)\|_{s}}{\|1+z\|_{s}}, \quad s>0 \tag{5}
\end{equation*}
$$

Also Boas and Rahman ${ }^{[5]}$ proved for $s \geqslant 1$ and Rahman and Schmeisser ${ }^{[12]}$ extended it for $0<$ $s<1$ that if $p(z)$ is a polynomial of degree n having no zeros in $|z|<1$, the inequality (4) can be replaced by

$$
\begin{equation*}
\|p(R z)\|_{s} \leq \frac{\left\|R^{n} z+1\right\|_{s}}{\|1+z\|_{s}}\|p(z)\|_{s}, \quad R>1, \quad s>0 \tag{6}
\end{equation*}
$$

Aziz and Rather ${ }^{[2]}$ obtained a generalization of the inequalities (3) and (4). In fact, they have shown that if $p \in P_{n}$, then for every $R>1$ and $s \geqslant 1$,

$$
\begin{equation*}
\|p(R z)-p(z)\|_{s} \leq\left(R^{n}-1\right)\|p(z)\|_{s} \tag{7}
\end{equation*}
$$

Recently Aziz and Rather [3] considered a more general problem of investigating the dependence of

$$
\|p(R z)-\beta p(r z)\|_{s} \quad \text { on } \quad\|p(z)\|_{s}
$$

for every $\beta \in \mathbf{C}$ with $|\beta| \leq 1, R>r \geqslant 1, s>0$ and extended the inequality (7) for $0<s<1$ as following.

