A MATHEMATICAL PROOF OF A PROBABILISTIC MODEL OF HARDY'S INEQUALITY

Prateek K
(Taleigao Plateau Goa University, India)

Received June 23, 2010; Revised Feb. 14, 2012

Abstract

In this paper using an argument from [1], we prove one of the probabilistic version of Hardy's inequality.

Key words: random variables, uniform partition, Hardy's inequality
AMS (2010) subject classification: 11K99, 11P55

1 Introduction

Hardy's inequality is defined as for a constant $c>0$, we have

$$
\sum_{n=1}^{\infty} \frac{|\hat{f}(n)|}{n} \leq c\|f\|_{1}
$$

for all functions $f \in L^{1}([0,2 \pi))$ with $\hat{f}(n)=0$ for $n<0$. This inequality is not true for all functions $f \in L^{1}([0,2 \pi))$, which can be seen by letting f to be the Fejér kernel of order N for large enough N.

When McGehee, Pigno and Smith ${ }^{[3]}$ proved the Littlewood conjecture, many questions were asked of how Hardy's inequality can be generalized for all functions $f \in L^{1}([0,2 \pi))$. For instance, one of the expected generalizations is the following:

$$
\sum_{n>0} \frac{\hat{f}(n) \mid}{n} \leq c\|f\|_{1}+c \sum_{n>0} \frac{|\hat{f}(-n)|}{n}, \quad f \in L^{1}([0,2 \pi))
$$

where $c>0$ is an absolute constant.
In this paper, we prove one version of Hardy's inequality for functions whose Fourier coefficients $\hat{f}(n)$ are random variables on $(0,1)$ for $n>0$ without conditions on $\hat{f}(n)$ for $n<0$.

In my proof use a technique that was motivated by Körner ${ }^{[1]}$, who used this technique in a different problem to modify a result of Byrnes (see [1]).

In the sequel, $[0,2 \pi)$ denotes the unit circle, $L^{1}([0,2 \pi)$ the space of integrable functions on $[0,2 \pi), \mu$ the Lebesgue measure, and B_{j} the set of integers in the interval $\left[4^{j-1}, 4^{j}\right)$.

2 Basic Lemmas

In this section, I am going to prove some basic lemmas required for our purpose.
Lemma 2.1. Let $X_{1}, X_{2}, \cdots, X_{N}$ be independent random variables such that

$$
\left|X_{j}\right| \leq 1 \quad \text { for each } \quad j, 1 \leq j \leq N
$$

and write

$$
S_{N}=X_{1}+X_{2}+\cdots+X_{N}
$$

Then, for any $\lambda>0$,

$$
\operatorname{Pr}\left(\left|S_{N}-E S_{N}\right| \geq \lambda\right) \leq 4 \exp \left(-\frac{\lambda^{2}}{100 N}\right)
$$

For the proof, see [4, p.398].
The idea of the following proof is due to Köner ${ }^{[1]}$. The statement of the lemma was observed by Kahane ${ }^{[2]}$ without proof.

Lemma 2.2. Let $\left(r_{k}\right)$ be a sequence of independent, zero mean random variables defined on the interval $(0,1)$ with $\left|r_{k}\right| \leq 1$ for all k. Let

$$
f_{n}(\theta, t)=\sum_{p=1}^{n} r_{p}(t) e^{i p \theta} \quad \text { for } \quad t \in(0,1) \quad \text { and } \quad \theta \in[0,2 \pi)
$$

Then for $n \geq 27$ and $\lambda \geq 2 \times 2$,

$$
\mu\left(\left\{t: \sup _{\theta}\left|f_{n}(\theta, t)\right| \geq \lambda \sqrt{n \log n}\right\}\right) \leq 4 n^{2-\frac{\lambda^{2}}{400}}
$$

Proof. By applying Lemma 2.1, we find that for fixed $\theta \in[0,2 \pi)$,

$$
\mu\left(\left\{t: \sup _{\theta}\left|f_{n}(\theta, t)\right| \geq \lambda \sqrt{n \log n}\right\}\right) \leq 4 n^{2-\frac{\lambda^{2}}{100}}
$$

Let $\left(\theta_{k}\right)_{k=1}^{n^{2}}$ be a uniform partition of the unit circle. For fixed $t \in(0,1)$ and $\theta_{k} \in[0,2 \pi)$ and for all θ with $\left|\theta-\theta_{k}\right| \leq 2 \pi / n^{2}$, we have

$$
\left|f_{n}(\theta, t)-f_{n}\left(\theta_{k}, t\right)\right| \leq \sum_{p=1}^{n}\left|r_{p}(t)\right|\left|e^{i p \theta}-e^{i p \theta_{k}}\right| \leq 2 \sum_{p=1}^{n} \frac{2 \pi}{n^{2}} p=\frac{2 \pi(n+1)}{n}
$$

