Anal. Theory Appl. Vol. 28, No. 1 (2012), 95–100

A MATHEMATICAL PROOF OF A PROBABILISTIC MODEL OF HARDY'S INEQUALITY

Prateek K

(Taleigao Plateau Goa University, India)

Received June 23, 2010; Revised Feb. 14, 2012

Abstract. In this paper using an argument from [1], we prove one of the probabilistic version of Hardy's inequality.

Key words: *random variables, uniform partition, Hardy's inequality* **AMS (2010) subject classification:** 11K99, 11P55

1 Introduction

Hardy's inequality is defined as for a constant c > 0, we have

$$\sum_{n=1}^{\infty} \frac{|\hat{f}(n)|}{n} \le c \|f\|_1$$

for all functions $f \in L^1([0,2\pi))$ with $\hat{f}(n) = 0$ for n < 0. This inequality is not true for all functions $f \in L^1([0,2\pi))$, which can be seen by letting f to be the Fejér kernel of order N for large enough N.

When McGehee, Pigno and Smith^[3] proved the Littlewood conjecture, many questions were asked of how Hardy's inequality can be generalized for all functions $f \in L^1([0, 2\pi))$. For instance, one of the expected generalizations is the following:

$$\sum_{n>0} \frac{\hat{f}(n)|}{n} \le c \|f\|_1 + c \sum_{n>0} \frac{|\hat{f}(-n)|}{n}, \qquad f \in L^1([0, 2\pi)),$$

where c > 0 is an absolute constant.

In this paper, we prove one version of Hardy's inequality for functions whose Fourier coefficients $\hat{f}(n)$ are random variables on (0,1) for n > 0 without conditions on $\hat{f}(n)$ for n < 0.

In my proof use a technique that was motivated by $K\"{o}rner^{[1]}$, who used this technique in a different problem to modify a result of Byrnes (see [1]).

In the sequel, $[0,2\pi)$ denotes the unit circle, $L^1([0,2\pi)$ the space of integrable functions on $[0,2\pi), \mu$ the Lebesgue measure, and B_j the set of integers in the interval $[4^{j-1},4^j)$.

2 Basic Lemmas

In this section, I am going to prove some basic lemmas required for our purpose. Lemma 2.1. Let X_1, X_2, \dots, X_N be independent random variables such that

$$|X_j| \le 1$$
 for each $j, 1 \le j \le N$,

and write

$$S_N = X_1 + X_2 + \dots + X_N.$$

Then, for any $\lambda > 0$ *,*

$$Pr(|S_N - ES_N| \ge \lambda) \le 4\exp(-\frac{\lambda^2}{100N}).$$

For the proof, see [4, p.398].

The idea of the following proof is due to Köner^[1]. The statement of the lemma was observed by Kahane ^[2] without proof.

Lemma 2.2. Let (r_k) be a sequence of independent, zero mean random variables defined on the interval (0,1) with $|r_k| \le 1$ for all k. Let

$$f_n(\theta,t) = \sum_{p=1}^n r_p(t)e^{ip\theta}$$
 for $t \in (0,1)$ and $\theta \in [0,2\pi)$.

Then for $n \ge 27$ *and* $\lambda \ge 2 \times 2$ *,*

$$\mu(\{t:\sup_{\theta}|f_n(\theta,t)|\geq\lambda\sqrt{n\log n}\})\leq 4n^{2-\frac{\lambda^2}{400}}.$$

Proof. By applying Lemma 2.1, we find that for fixed $\theta \in [0, 2\pi)$,

$$\mu(\{t: \sup_{\theta} |f_n(\theta, t)| \ge \lambda \sqrt{n \log n}\}) \le 4n^{2-\frac{\lambda^2}{100}}.$$

Let $(\theta_k)_{k=1}^{n^2}$ be a uniform partition of the unit circle. For fixed $t \in (0,1)$ and $\theta_k \in [0,2\pi)$ and for all θ with $|\theta - \theta_k| \le 2\pi/n^2$, we have

$$|f_n(\theta,t) - f_n(\theta_k,t)| \le \sum_{p=1}^n |r_p(t)| |e^{ip\theta} - e^{ip\theta_k}| \le 2\sum_{p=1}^n \frac{2\pi}{n^2} p = \frac{2\pi(n+1)}{n}.$$