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Abstract. In this paper, we establish two weighted integral inequalities for commutators

of fractional Hardy operators with Besov-Lipschitz functions. The main result is that this

kind of commutator, denoted by Hα
b , is bounded from L

p
xγ (R+) to L

q

xδ (R+) with the bound

explicitly worked out.
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1 Introduction and Main Results

Let f be a non-negative integrable function on R+ = (0,∞). The classical Hardy operator

and its adjoint operator are defined by

H f (x) :=
1

x

∫ x

0
f (t)dt, x > 0

and

H∗ f (x) :=
∫ ∞

x

f (t)

t
dt, x > 0.

The following well-known integral inequalities is due to Hardy (cf.[5,6]).

Theorem A. If f is a non-negative measurable function on R+ and 1 < p < ∞, then the

following two inequalities

‖H f‖Lp(R+) ≤
p

p−1
‖ f‖Lp(R+)
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and

‖H∗ f‖Lp(R+) ≤ p‖ f‖Lp(R+)

hold, where the constants
p

p−1
and p are sharp.

For the n-dimensional case, Lu[9] discussed the following Hardy operator defined on the

product space,

H f (x) :=
1

x1 · · ·xn

∫ x1

0
· · ·

∫ xn

0
f (t1, · · · , tn)dt1 · · ·dtn, x = (x1,x2, · · · ,xn) ∈ Rn

+ (1)

and the adjoint operator of the Hardy operator defined by

H
∗ f (x) :=

∫ ∞

x1

· · ·
∫ ∞

xn

f (t1, · · · , tn)

t1 · · · tn
dt1 · · ·dtn, x = (x1,x2, · · · ,xn) ∈ Rn

+, (2)

where Rn
+ = (0,∞)n and f is a non-negative measurable function on Rn

+.

In [9], the following Theorem B is obtained.

Theorem B. Suppose that f is any non-negative measurable function on Rn
+ and 1 < p ≤

q < ∞. Then the Hardy operator H defined by (1) is bounded from Lp(Rn
+,xγ ) to Lq(Rn

+,xδ ),

that is, the inequality

(

∫

Rn
+

(H f (x))q
xδ dx

)
1
q

≤C

(

∫

Rn
+

f p(x)xγ dx

)
1
p

(3)

holds for some constant C, if and only if

γ < p−1 and δ =
q

p
(γ + 1)−1. (4)

Moreover, if the conditions in (4) are satisfied, then we have

(

∫

Rn
+

(H f (x))q
xβ dx

)
1
q

≤

(

n

∏
i=1

q

r(q−δi −1)

)
1
r (∫

Rn
+

f p(x)xγ dx

)
1
p

; (5)

and the adjoint operator of the Hardy operator H
∗ defined by (2) is also bounded from Lp(Rn

+,xγ )

to Lq(Rn
+,xδ ), that is, the inequality

(

∫

Rn
+

(H∗ f (x))q
xδ dx

)
1
q

≤C

(

∫

Rn
+

f p(x)xγ dx

)
1
p

(6)

holds for some constant C, if and only if

γ + 1 > 0 and δ =
q

p
(γ + 1)−1. (7)

Furthermore, if the conditions in (7) are satisfied, then we have

(

∫

Rn
+

(H∗ f (x))q
xδ dx

)
1
q

≤

(

n

∏
i=1

q

r(δi + 1)

)
1
r (∫

Rn
+

f p(x)xγ dx

)
1
p

, (8)


