WEIGHTED BOUNDEDNESS OF COMMUTATORS OF FRACTIONAL HARDY OPERATORS WITH BESOV-LIPSCHITZ FUNCTIONS

Shimo Wang

(Graduate University of Chinese Academy of Sciences, Heilongjiang University, China)

Dunyan Yan

(Graduate University of Chinese Academy of Sciences, China)

Received Dec. 24, 2011

Abstract. In this paper, we establish two weighted integral inequalities for commutators of fractional Hardy operators with Besov-Lipschitz functions. The main result is that this kind of commutator, denoted by H_b^{α} , is bounded from $L_{x\gamma}^p(\mathbf{R}_+)$ to $L_{x\delta}^q(\mathbf{R}_+)$ with the bound explicitly worked out.

Key words: *fractional Hardy operator, commutator, Besov-Lipschitz function* **AMS (2010) subject classification:** 42B20, 42B35

1 Introduction and Main Results

Let f be a non-negative integrable function on $\mathbf{R}_+ = (0, \infty)$. The classical Hardy operator and its adjoint operator are defined by

$$Hf(x) := \frac{1}{x} \int_0^x f(t) \mathrm{d}t, \qquad x > 0$$

and

$$H^*f(x) := \int_x^\infty \frac{f(t)}{t} \mathrm{d}t, \qquad x > 0.$$

The following well-known integral inequalities is due to Hardy (cf.[5,6]).

Theorem A. If *f* is a non-negative measurable function on \mathbf{R}_+ and 1 , then the following two inequalities

$$\|Hf\|_{L^p(\mathbf{R}_+)} \le \frac{p}{p-1} \|f\|_{L^p(\mathbf{R}_+)}$$

Supported in part by the Natural Science Foundation of China under the Grant 10771221 and Natural Science Foundation of Beijing under the Grant 1092004.

80 S. M. Wang et al : Weighted Boundedness of Commutators of Fractional Hardy Operators

and

$$||H^*f||_{L^p(\mathbf{R}_+)} \le p||f||_{L^p(\mathbf{R}_+)}$$

hold, where the constants $\frac{p}{p-1}$ and p are sharp.

For the n-dimensional case, Lu^[9] discussed the following Hardy operator defined on the product space,

$$\mathcal{H}f(x) := \frac{1}{x_1 \cdots x_n} \int_0^{x_1} \cdots \int_0^{x_n} f(t_1, \cdots, t_n) \mathrm{d}t_1 \cdots \mathrm{d}t_n, \quad x = (x_1, x_2, \cdots, x_n) \in \mathbf{R}_+^n$$
(1)

and the adjoint operator of the Hardy operator defined by

$$\mathcal{H}^*f(x) := \int_{x_1}^{\infty} \cdots \int_{x_n}^{\infty} \frac{f(t_1, \cdots, t_n)}{t_1 \cdots t_n} \mathrm{d}t_1 \cdots \mathrm{d}t_n, \quad x = (x_1, x_2, \cdots, x_n) \in \mathbf{R}^n_+, \tag{2}$$

where $\mathbf{R}_{+}^{n} = (0, \infty)^{n}$ and f is a non-negative measurable function on \mathbf{R}_{+}^{n} .

In [9], the following Theorem B is obtained.

Theorem B. Suppose that f is any non-negative measurable function on \mathbb{R}^n_+ and $1 . Then the Hardy operator <math>\mathcal{H}$ defined by (1) is bounded from $L^p(\mathbb{R}^n_+, x^{\gamma})$ to $L^q(\mathbb{R}^n_+, x^{\delta})$, that is, the inequality

$$\left(\int_{\mathbf{R}^{n}_{+}} \left(\mathcal{H}f(x)\right)^{q} x^{\delta} \mathrm{d}x\right)^{\frac{1}{q}} \leq C \left(\int_{\mathbf{R}^{n}_{+}} f^{p}(x) x^{\gamma} \mathrm{d}x\right)^{\frac{1}{p}}$$
(3)

holds for some constant C, if and only if

$$\gamma < \mathbf{p} - \mathbf{1}$$
 and $\delta = \frac{q}{p}(\gamma + \mathbf{1}) - \mathbf{1}.$ (4)

Moreover, if the conditions in (4) are satisfied, then we have

$$\left(\int_{\mathbf{R}^{n}_{+}} \left(\mathcal{H}f(x)\right)^{q} x^{\beta} \mathrm{d}x\right)^{\frac{1}{q}} \leq \left(\prod_{i=1}^{n} \frac{q}{r(q-\delta_{i}-1)}\right)^{\frac{1}{r}} \left(\int_{\mathbf{R}^{n}_{+}} f^{p}(x) x^{\gamma} \mathrm{d}x\right)^{\frac{1}{p}};\tag{5}$$

and the adjoint operator of the Hardy operator \mathcal{H}^* defined by (2) is also bounded from $L^p(\mathbb{R}^n_+, x^{\gamma})$ to $L^q(\mathbb{R}^n_+, x^{\delta})$, that is, the inequality

$$\left(\int_{\mathbf{R}^{n}_{+}} \left(\mathcal{H}^{*}f(x)\right)^{q} x^{\delta} \mathrm{d}x\right)^{\frac{1}{q}} \leq C \left(\int_{\mathbf{R}^{n}_{+}} f^{p}(x) x^{\gamma} \mathrm{d}x\right)^{\frac{1}{p}}$$
(6)

holds for some constant C, if and only if

$$\gamma + 1 > 0$$
 and $\delta = \frac{q}{p}(\gamma + 1) - 1.$ (7)

Furthermore, if the conditions in (7) are satisfied, then we have

$$\left(\int_{\mathbf{R}^{n}_{+}} \left(\mathcal{H}^{*}f(x)\right)^{q} x^{\delta} \mathrm{d}x\right)^{\frac{1}{q}} \leq \left(\prod_{i=1}^{n} \frac{q}{r(\delta_{i}+1)}\right)^{\frac{1}{r}} \left(\int_{\mathbf{R}^{n}_{+}} f^{p}(x) x^{\gamma} \mathrm{d}x\right)^{\frac{1}{p}},\tag{8}$$