Volterra Integral Equation of Hermite Matrix Polynomials

Raed S. Batahan*
Department of Mathematics, Faculty of Science, Hadhramout University of Science and Technology, 50511, Mukalla, Yemen.

Received 19 August 2011

Abstract

The primary purpose of this paper is to present the Volterra integral equation of the two-variable Hermite matrix polynomials. Moreover, a new representation of these matrix polynomials are established here.

Key Words: Hermite matrix polynomials, three terms recurrence relation and Volterra integral equation.
AMS Subject Classifications: 15A15, 33C45, 42C05, 45D05

1 Introduction

In [9], the Laguerre and Hermite matrix polynomials are introduced as examples of right orthogonal matrix polynomial sequences for appropriate right matrix moment functionals of integral type. The Hermite matrix polynomials $H_{n}(x, A)$, have been introduced and studied in $[7,8]$, where $H_{n}(x, A)$ involves a parameter $A \in \mathbb{C}^{N \times N}$. Indeed, all eigenvalues of the matrix A lie on the open right-hand half of the complex plane.

Some properties of series expansions and the bounds of the $H_{n}(x, A)$ are given in [3-5]. Moreover, two generalizations of $H_{n}(x, A)$ are given in [2,12]. Recently, an efficient method for computing matrix exponentials based on Hermite matrix polynomial expansions has been presented in [11].

The aim of this paper is to provide some results on the two-variable Hermite matrix polynomials and introduce the Volterra integral equation of these matrix polynomials. The structure of this paper is the following. Section 2 summarizes previous results of the two-variable Hermite matrix polynomials and includes a new property of these matrix polynomials. In Section 3, we construct the Volterra integral equation of the two-variable Hermite matrix polynomials.

[^0]Throughout this paper, for a matrix A in $C^{N \times N}$, we denote by $\sigma(A)$ the spectrum of A or the set of all eigenvalues of A. If $f(z)$ and $g(z)$ are holomorphic functions of the complex variable z, which are defined in an open set Ω of the complex plane and A is a matrix in $\mathbb{C}^{N \times N}$ with $\sigma(A) \subset \Omega$, then from the property of the matrix functional calculus [6, p. 558], it follows that

$$
\begin{equation*}
f(A) g(A)=g(A) f(A) . \tag{1.1}
\end{equation*}
$$

In what follows, the matrices I and θ in $\mathbb{C}^{N \times N}$ denote the matrix identity and the zero matrix of order N, respectively.

2 The two-variable Hermite matrix polynomials

In this section, for the sake of clarity in the presentation of the following results we recall some properties of the two-variable Hermite matrix polynomials which have been established in [2]. Moreover, some new properties concerning these matrix polynomials are given here.

If D_{0} is the complex plane cut along the negative real axis and $\log (z)$ denotes the principle logarithm of z, then $z^{1 / 2}$ represents $\exp \left(\frac{1}{2} \log (z)\right)$. If A is a matrix in $\mathrm{C}^{N \times N}$ with $\sigma(A) \subset D_{0}$, then $A^{\frac{1}{2}}=\sqrt{A}$ denotes the image by $z^{1 / 2}$ of the matrix functional calculus acting on the matrix A. Let A be a matrix in $\mathbb{C}^{N \times N}$ such that

$$
\begin{equation*}
\operatorname{Re}(\lambda)>0 \quad \text { for all } \lambda \in \sigma(A) \tag{2.1}
\end{equation*}
$$

Then the two-variable Hermite matrix polynomial [2VHMPs] are defined in [2, p. 84] by

$$
\begin{equation*}
H_{n}(x, y, A)=n!\sum_{k=0}^{\lfloor n / 2\rfloor} \frac{(-1)^{k} y^{k}}{k!(n-2 k)!}(x \sqrt{2 A})^{n-2 k} \tag{2.2}
\end{equation*}
$$

where $\lfloor a\rfloor$ is the standard floor function which maps a real number a to its next smallest integer. According to [2, Theorem 7], it follows that

$$
\begin{equation*}
(x \sqrt{2 A})^{n}=\exp \left(y(2 A)^{-1} \frac{\partial^{2}}{\partial x^{2}}\right) H_{n}(x, z, A) \tag{2.3}
\end{equation*}
$$

Note that the 2VHMPs are the solutions of the following matrix differential equation:

$$
\begin{equation*}
\left[y \frac{\partial^{2}}{\partial x^{2}}-x A \frac{\partial}{\partial x}+n A\right] H_{n}(x, y, A)=\theta ; \quad n \geq 0 \tag{2.4}
\end{equation*}
$$

and satisfy the three terms recurrence relationship:

$$
\begin{equation*}
H_{n}(x, y, A)=x \sqrt{2 A} H_{n-1}(x, y, A)-2(n-1) y H_{n-2}(x, y, A) ; \quad n \geq 2 \tag{2.5}
\end{equation*}
$$

[^0]: *Corresponding author. Email address: rbatahan@hotmail.com (R. S. Batahan)

