Some Results Concerning Growth of Polynomials

Ahmad Zireh*, E. Khojastehnejhad and S. R. Musawi
Department of Mathematics, Shahrood University of Technology, Shahrood, Iran

Received 19 July 2011

$$
\begin{aligned}
& \text { Abstract. Let } P(z) \text { be a polynomial of degree } n \text { having no zeros in }|z|<1 \text {, then for } \\
& \text { every real or complex number } \beta \text { with }|\beta| \leq 1 \text {, and }|z|=1, R \geq 1 \text {, it is proved by Dewan } \\
& \text { et al. [4] that } \\
& \qquad \begin{aligned}
\left|P(R z)+\beta\left(\frac{R+1}{2}\right)^{n} P(z)\right| \leq & \frac{1}{2}\left\{\left(\left|R^{n}+\beta\left(\frac{R+1}{2}\right)^{n}\right|+\left|1+\beta\left(\frac{R+1}{2}\right)^{n}\right|\right) \max _{|z|=1}^{n|P(z)|}\right. \\
& \left.-\left(\left|R^{n}+\beta\left(\frac{R+1}{2}\right)^{n}\right|-\left|1+\beta\left(\frac{R+1}{2}\right)^{n}\right|\right) \min _{|z|=1}|P(z)|\right\} .
\end{aligned}
\end{aligned}
$$

In this paper we generalize the above inequality for polynomials having no zeros in $|z|<k, k \leq 1$. Our results generalize certain well-known polynomial inequalities.
Key Words: Polynomial, inequality, maximum modulus, growth of polynomial.
AMS Subject Classifications: 30A10, 30C10, 30E15

1 Introduction and statement of results

It is well known that if $P(z)$ is a polynomial of degree n, then for $|z|=1$ and $R \geq 1$

$$
\begin{equation*}
|P(R z)|+|Q(R z)| \leq\left(R^{n}+1\right) \max _{|z|=1}|P(z)|, \tag{1.1}
\end{equation*}
$$

where $Q(z)=z^{n} \overline{P(1 / \bar{z})}$ (see [6]).
On the other hand, concerning the estimate of $|P(z)|$ on the disc $|z| \leq R, R \geq 1$, we have, as a simple consequence of the principle of maximum modulus (see also [6]), if $P(z)$ is a polynomial of degree n, then for $R \geq 1$

$$
\begin{equation*}
\max _{|z|=R}|P(z)| \leq R^{n} \max _{|z|=1}|P(z)| . \tag{1.2}
\end{equation*}
$$

[^0]The result is best possible and the equality holds for polynomials having zeros at the origin.

It was shown by Ankeny and Rivlin [1] that if $P(z)$ doe not vanish in $|z|<1$, then the inequality (1.2) can be replaced by

$$
\begin{equation*}
\max _{|z|=R}|P(z)| \leq \frac{R^{n}+1}{2} \max _{|z|=1}|P(z)|, \quad R \geq 1 . \tag{1.3}
\end{equation*}
$$

The inequality (1.3) is sharp and the equality holds for $P(z)=\alpha z^{n}+\gamma$, where $|\alpha|=|\gamma|$.
The inequality (1.3) was generalized by Jain [5] who proved that if $P(z)$ is a polynomial of degree n having no zeros in $|z|<1$, then for $|\beta| \leq 1, R \geq 1$ and $|z|=1$,

$$
\begin{align*}
& \left|P(R z)+\beta\left(\frac{R+1}{2}\right)^{n} P(z)\right| \\
\leq & \frac{1}{2}\left\{\left|R^{n}+\beta\left(\frac{R+1}{2}\right)^{n}\right|+\left|1+\beta\left(\frac{R+1}{2}\right)^{n}\right|\right\} \max _{|z|=1}|P(z)| . \tag{1.4}
\end{align*}
$$

Aziz and Dawood [3] used

$$
\begin{equation*}
\min _{|z|=1}|P(z)| \tag{1.5}
\end{equation*}
$$

to obtain a refinement of the inequality (1.3) and proved, if $P(z)$ is a polynomial of degree n which does not vanish in $|z|<1$, then for $R \geq 1$

$$
\begin{equation*}
\max _{|z|=R}|P(z)| \leq\left(\frac{R^{n}+1}{2}\right) \max _{|z|=1}|P(z)|-\left(\frac{R^{n}-1}{2}\right) \min _{|z|=1}|P(z)| . \tag{1.6}
\end{equation*}
$$

The result is best possible and the equality holds for $P(z)=\alpha z^{n}+\gamma$ with $|\alpha|=|\gamma|$.
As refinement of the inequality (1.4) and generalization of the inequality (1.6), Dewan and Hans [4] have proved that if $P(z)$ is a polynomial of degree n having no zeros in $|z|<1$, then for $|\beta| \leq 1, R \geq 1$ and $|z|=1$,

$$
\begin{align*}
\left|P(R z)+\beta\left(\frac{R+1}{2}\right)^{n} P(z)\right| \leq & \frac{1}{2}\left\{\left(\left|R^{n}+\beta\left(\frac{R+1}{2}\right)^{n}\right|+\left|1+\beta\left(\frac{R+1}{2}\right)^{n}\right|\right) \max _{|z|=1}|P(z)|\right. \\
& \left.-\left(\left|R^{n}+\beta\left(\frac{R+1}{2}\right)^{n}\right|-\left|1+\beta\left(\frac{R+1}{2}\right)^{n}\right|\right) \min _{|z|=1}|P(z)|\right\} . \tag{1.7}
\end{align*}
$$

The result is best possible and the equality holds for $P(z)=\alpha z^{n}+\gamma$ with $|\alpha|=|\gamma|$.
Whereas if $P(z)$ has all its zeros in $|z| \leq 1$, then for any $|\beta| \leq 1, R \geq 1$ and $|z|=1$,

$$
\begin{equation*}
\min _{|z|=1}\left|P(R z)+\beta\left(\frac{R+1}{2}\right)^{n} P(z)\right| \geq\left|R^{n}+\beta\left(\frac{R+1}{2}\right)^{n}\right| \min _{|z|=1}|P(z)| . \tag{1.8}
\end{equation*}
$$

The result is best possible and the equality holds for $P(z)=m e^{i \alpha} z^{n}, m>0$.
In this paper, we obtain further generalizations of the inequalities (1.7) and (1.8). More precisely, we prove

[^0]: *Corresponding author. Email addresses: azireh@shahroodut.ac.ir (A. Zireh), khojastehnejadelahe@ gmail.com (E. Khojastehnejhad), r-musawi@yahoo. com (S. R. Musawi)

