New Criterion for Starlike Integral Operators

Aabed Mohammed ${ }^{1}$, Maslina Darus ${ }^{2, *}$ and Daniel Breaz ${ }^{3}$
${ }^{1}$ Department of Mathematics, Basic Sciences Unit, Sana'a Community College, Yemen
${ }^{2}$ School of Mathematical Sciences, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, 43600 Bangi, Selangor D. Ehsan, Malaysia
${ }^{3}$ Faculty of Science, Department of Mathematics-Informatics, 510009 Alba Iulia, Romania

Received 30 May 2010

Abstract. In this paper, we introduce new sufficient conditions for certain integral operators to be starlike and p-valently starlike in the open unit disk.

Key Words: Analytic function, univalent function, p-valently starlike, integral operator.
AMS Subject Classifications: 30C45

1 Introduction

Let $\mathcal{U}=\{z \in \mathbf{C}:|z|<1\}$, the unit disk. We denote by $\mathcal{H}(\mathcal{U})$ the class of holomorphic functions defined on \mathcal{U}. Let \mathcal{A}_{p} be the class of all p-valent analytic functions of the form

$$
f(z)=z^{p}+a_{p+1} z^{p+1}+\cdots, \quad p \in \mathbf{N}=\{1,2, \cdots\} .
$$

For $p=1$, we obtain $\mathcal{A}_{1}=\mathcal{A}$, the class of univalent analytic functions in the unit disk. Let \mathcal{S}^{*} and \mathcal{K} denote the subclasses of starlike and convex functions in \mathcal{U} respectively. Recall that $f \in \mathcal{A}$ is convex if and only if

$$
\operatorname{Re}\left(\frac{z f^{\prime \prime}(z)}{f^{\prime}(z)}+1\right)>0, \quad z \in \mathcal{U}
$$

and starlike if and only if

$$
\Re\left(\frac{z f^{\prime}(z)}{f(z)}\right)>0, \quad z \in \mathcal{U}
$$

[^0]For $f_{i}(z) \in \mathcal{A}$ and $\alpha_{i}>0$, for all $i \in\{1,2,3, \cdots, n\}$, D. Breaz and N. Breaz [2] introduced the following integral operator:

$$
\begin{equation*}
F_{n}(z)=\int_{0}^{z}\left(\frac{f_{1}(t)}{t}\right)^{\alpha_{1}} \cdots\left(\frac{f_{n}(t)}{t}\right)^{\alpha_{n}} d t \tag{1.1}
\end{equation*}
$$

Recently Breaz et al. in [3] introduced the following integral operator:

$$
\begin{equation*}
F_{\alpha_{1}, \cdots, \alpha_{n}}(z)=\int_{0}^{z}\left[f_{1}^{\prime}(t)\right]^{\alpha_{1}} \cdots\left[f_{n}^{\prime}(t)\right]^{\alpha_{1}} d t . \tag{1.2}
\end{equation*}
$$

The most recent, Frasin [1] introduced the following integral operators, for $\alpha_{i}>0$ and $f_{i} \in \mathcal{A}_{p}$,

$$
\begin{equation*}
F_{p}(z)=\int_{0}^{z} p t^{p-1}\left(\frac{f_{1}(t)}{t^{p}}\right)^{\alpha_{1}} \cdots\left(\frac{f_{n}(t)}{t^{p}}\right)^{\alpha_{n}} d t \tag{1.3}
\end{equation*}
$$

and

$$
\begin{equation*}
G_{p}(z)=\int_{0}^{z} p t^{p-1}\left(\frac{f_{1}^{\prime}(t)}{p t^{p-1}}\right)^{\alpha_{1}} \cdots\left(\frac{f_{1}^{\prime}(t)}{p t^{p-1}}\right)^{\alpha_{n}} d t . \tag{1.4}
\end{equation*}
$$

Remark 1.1. (i) For $p=1$, we get $F_{1}(z)=F_{n}(z)$, and $G_{1}(z)=F_{\alpha_{1}, \cdots, \alpha_{n}}(z)$.
(ii) For $p=n=1, \alpha_{1}=\alpha \in[0,1]$ in (1.3) we get the integral operator

$$
F_{\alpha}(z)=\int_{0}^{z}\left(\frac{f(t)}{t}\right)^{\alpha} d t
$$

which is studied in [7].
(iii) For $p=n=1, \alpha=1$ in (1.3) we get the integral operator

$$
G(z)=\int_{0}^{z} \frac{f(t)}{t}
$$

introduced by Alexander [4].
(iv) For $p=n=1, \alpha_{1}=\alpha \in \mathbf{C},|\alpha| \leq 1 / 4$ in (1.4) we get the integral operator

$$
\int_{0}^{z}\left(f^{\prime}(t)\right)^{\alpha} d t
$$

which is studied in [5].

2 Main result

In order to prove our main results we shall need the following lemma due to S. S. Miller and P. T. Mocanu [6]:

[^0]: *Corresponding author. Email addresses: aabedukm@yahoo.com (A. Mohammed), maslina@ukm.my (M. Darus), dbreaz@uab.ro (D. Breaz)

