DOI: 10.4208/ata.2013.v29.n1.3

New Criterion for Starlike Integral Operators

Aabed Mohammed¹, Maslina Darus^{2,*} and Daniel Breaz³

Received 30 May 2010

Abstract. In this paper, we introduce new sufficient conditions for certain integral operators to be starlike and *p*-valently starlike in the open unit disk.

Key Words: Analytic function, univalent function, *p*-valently starlike, integral operator.

AMS Subject Classifications: 30C45

1 Introduction

Let $\mathcal{U} = \{z \in \mathbf{C} : |z| < 1\}$, the unit disk. We denote by $\mathcal{H}(\mathcal{U})$ the class of holomorphic functions defined on \mathcal{U} . Let \mathcal{A}_p be the class of all p-valent analytic functions of the form

$$f(z) = z^p + a_{p+1}z^{p+1} + \cdots, \quad p \in \mathbb{N} = \{1, 2, \cdots\}.$$

For p=1, we obtain $\mathcal{A}_1=\mathcal{A}$, the class of univalent analytic functions in the unit disk. Let \mathcal{S}^* and \mathcal{K} denote the subclasses of starlike and convex functions in \mathcal{U} respectively. Recall that $f \in \mathcal{A}$ is convex if and only if

$$\operatorname{Re}\left(\frac{zf''(z)}{f'(z)}+1\right) > 0, \quad z \in \mathcal{U},$$

and starlike if and only if

$$\Re\left(\frac{zf'(z)}{f(z)}\right) > 0, \quad z \in \mathcal{U}.$$

¹ Department of Mathematics, Basic Sciences Unit, Sana'a Community College, Yemen

² School of Mathematical Sciences, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, 43600 Bangi, Selangor D. Ehsan, Malaysia

³ Faculty of Science, Department of Mathematics-Informatics, 510009 Alba Iulia, Romania

^{*}Corresponding author. *Email addresses:* aabedukm@yahoo.com (A. Mohammed), maslina@ukm.my (M. Darus), dbreaz@uab.ro (D. Breaz)

For $f_i(z) \in A$ and $\alpha_i > 0$, for all $i \in \{1,2,3,\dots,n\}$, D. Breaz and N. Breaz [2] introduced the following integral operator:

$$F_n(z) = \int_0^z \left(\frac{f_1(t)}{t}\right)^{\alpha_1} \cdots \left(\frac{f_n(t)}{t}\right)^{\alpha_n} dt. \tag{1.1}$$

Recently Breaz et al. in [3] introduced the following integral operator:

$$F_{\alpha_1,\dots,\alpha_n}(z) = \int_0^z [f_1'(t)]^{\alpha_1} \cdots [f_n'(t)]^{\alpha_1} dt.$$
 (1.2)

The most recent, Frasin [1] introduced the following integral operators, for $\alpha_i > 0$ and $f_i \in \mathcal{A}_v$,

$$F_p(z) = \int_0^z pt^{p-1} \left(\frac{f_1(t)}{t^p}\right)^{\alpha_1} \cdots \left(\frac{f_n(t)}{t^p}\right)^{\alpha_n} dt \tag{1.3}$$

and

$$G_{p}(z) = \int_{0}^{z} pt^{p-1} \left(\frac{f_{1}'(t)}{pt^{p-1}} \right)^{\alpha_{1}} \cdots \left(\frac{f_{1}'(t)}{pt^{p-1}} \right)^{\alpha_{n}} dt.$$
 (1.4)

Remark 1.1. (i) For p = 1, we get $F_1(z) = F_n(z)$, and $G_1(z) = F_{\alpha_1, \dots, \alpha_n}(z)$.

(ii) For p = n = 1, $\alpha_1 = \alpha \in [0,1]$ in (1.3) we get the integral operator

$$F_{\alpha}(z) = \int_0^z \left(\frac{f(t)}{t}\right)^{\alpha} dt$$

which is studied in [7].

(iii) For p = n = 1, $\alpha = 1$ in (1.3) we get the integral operator

$$G(z) = \int_0^z \frac{f(t)}{t}$$

introduced by Alexander [4].

(iv) For p = n = 1, $\alpha_1 = \alpha \in \mathbb{C}$, $|\alpha| \le 1/4$ in (1.4) we get the integral operator

$$\int_0^z (f'(t))^{\alpha} dt,$$

which is studied in [5].

2 Main result

In order to prove our main results we shall need the following lemma due to S. S. Miller and P. T. Mocanu [6]: