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Abstract. In this paper, we introduce new sufficient conditions for certain integral op-
erators to be starlike and p-valently starlike in the open unit disk.
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1 Introduction

Let U= {z € C:|z| <1}, the unit disk. We denote by H(U) the class of holomorphic
functions defined on U. Let A, be the class of all p-valent analytic functions of the form

f(z):zP—|—ap+lzP+1_|_..., peN={1,2,--}.

For p=1, we obtain A; = A, the class of univalent analytic functions in the unit disk. Let
8" and X denote the subclasses of starlike and convex functions in U respectively. Recall
that f € A is convex if and only if

Re(z}[,/;g +1> >0, zel,

and starlike if and only if

%(Zﬁ;)) >0, zel.
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For fi(z) € Aand a; >0, for all i€ {1,2,3,---,n}, D. Breaz and N. Breaz [2] introduced
the following integral operator:

_ [ AONT S
R(a)= [ (7)) () e (L1)
Recently Breaz et al. in [3] introduced the following integral operator:
z
Faem (D)= [ AW (]t 1.2

The most recent, Frasin [1] introduced the following integral operators, for a; >0 and
fi€Ap,

F,,(z):/ozptp1(f1t_g))m...<fﬂt§f))“”dt (1.3)
and
GP<Z):/OZptP1(%>M...<%)andt. (1.4)

Remark 1.1. (i) For p=1, we get F(z) =F,(z), and G1(z) =Fy,..- , (2)-
(ii) For p=n=1, &y =a €[0,1] in (1.3) we get the integral operator

_ [P f)"
R(a)= [ () a
which is studied in [7].
(iii) For p=n=1, a =1 in (1.3) we get the integral operator

G(z):/oz@

introduced by Alexander [4].
(iv) For p=n=1,a1=a€C, |#| <1/4 in (1.4) we get the integral operator

| oy,

which is studied in [5].

2 Main result

In order to prove our main results we shall need the following lemma due to S. S. Miller
and P. T. Mocanu [6]:



