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Abstract. In this paper, we study the existence of standing waves of the coupled non-
linear Schrödinger equations. The proofs of which rely on the Lyapunov-Schmidt
methods and contraction mapping principle are due to F. Weinstein in [1].
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1 Introduction

Nonlinear Schrödinger equations (NLS) have been broadly investigated in many aspects,
such as concentraction and multi-bump phenomena for semiclassical states, existence of
solitary waves (see [10]).

Recently, there are also many results for coupled Nonlinear Schrödinger equations
(CNLS). One can refer to [2–8], for example, [3] studied the interaction and configuration
of spikes in a doubled condensate by analyzing least energy solutions of two coupled
nonlinear Schrödinger equations. It is shown that the interaction term determines the
locations of the two spikes and asympototic shape of least energy solutions. [8] deals
with a class of nonlinear Schrödinger equations which are linearly coupled, and have
attracted a considerable attention in the last years.

In [1], F. Weinstein used Lyapunov-Schmidt methods is to prove the existence of s-
tanding wave of Schrödinger equation. This method is classic. In this paper, we try to
use the Lyapunov-Schmidt method to prove the case of equations, i.e., we want to use
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Lyapunov-Schmidt method to prove the existence of the coupled nonlinear Schrödinger
equations
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ϕxx−P(x)|φ|2 ϕ+λϕ+γ|ϕ|2ϕ= ihϕt,

h2

2m
φxx−Q(x)|ϕ|2φ+λφ+γ|φ|2φ= ihφt.

(1.1)

We shall find solutions of the form

(ϕ(x,t),φ(x,t))=
(
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)
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u1(x)
)
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where u1, v1 are real-valued, then we get
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v′′1 −P(x)v1u2

1+λv1+v3
1=0,

h2

2m
u′′

1 −Q(x)v2
1u1+λu1+u3

1=0.

(1.2)

For simplicity of notation, we shall assume that m=1, γ=1, so that (1.2) is reduced to
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v′′1 −P(x)u2
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1=0,
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1 −Q(x)u1v2
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1=0.

(1.3)

We assume P(x), Q(x) satisfy the following conditions:

(1) P(x), Q(x) are bounded, continuous and nondegenerate functions;

(2) P(0)=Q(0), limx→∞ P(x)= limx→∞ Q(x)=0;

(3) maxx∈R P(x)<λ, maxx∈R Q(x)<λ.

The main result of this paper is:

Theorem 1.1. For each nondegenerate critical point x0 of P, Q, where P, Q satisfy the above
conditions, there is h0 such that for all h with 0< h< h0, the Eqs. (1.3) have a nonzero solution;
and these solutions become more and more concentrated about x0 as h→0.

Some notations are the following:

H=H2, L= L2, 〈,〉 : L2−inner product,

‖ f‖2 =
∫

f 2(x)dx, Kz,h= span{u′
z,h}, Ez,h = span{v′z,h},

K⊥
z,h= L2−orthogonal complement of Kz,h in H,

π⊥
z,h= L2−orthogonal projection to K⊥

z,h×E⊥
z,h in H×H.


