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PARTIALLY OBSERVABLE STOCHASTIC OPTIMAL CONTROL

GUANGCHEN WANG, JIE XIONG, AND SHUAIQI ZHANG

Abstract. This paper is a survey on some recent results in optimal control and stochastic
filtering. The goal is not to cover all recent developments in control and filtering, instead we
focus on maximum principle for optimality of partial information backward or forward-backward
stochastic differential equations and branching particle approximation of nonlinear filtering.
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1. Introduction

Stochastic control is the study of uncertain dynamical systems which can be
controlled by decision makers so as to reach the best expected goals. In the real-
world, the decision makers are usually only able to observe partially the state
by other noisy observations. For example, in financial models, risky asset prices
are observable but the appreciation rates of the assets are unavailable. See e.g.
Xiong and Zhou [42] and the references therein. See also Huang, Wang and Wu
[23] for optimal premium of insurance company with partial information. In these
situations, we are facing optimal control problems of partially observable systems.

Such a kind of partially observed optimal control problem is composed of filtering
and control. The filtering part is related to two stochastic processes: signal and ob-
servation. The signal process is what we want to estimate based on the observation
which provides the information we can use. Analytical solutions to the filtering
problems are rarely available in general. Thus, we have to resort to numerical
schemes. Particle system approximation is an effective class of numerical schemes.
The main idea is to represent the solution as a stochastic partial differential equa-
tion (SPDE) via a system of weighted particles whose locations and weights obey
stochastic differential equations (SDEs) which can be solved numerically. The par-
ticle system approximation was studied in heuristic schemes by Gordon, Salmond
and Ewing [20], Gordon, Salmond and Smith [21], Kitagawa [25], Carvalho et al.
[3], Del Moral, Noyer and Salut [18]. Del Moral [14] considered a particle ap-
proximation for a model with independent observation noise that discounted past
information. Florchinger and Gland [19] formulated a particle approximation for
optimal filter. A rigorous proof of the convergent result for the particle filter is pub-
lished by Del Moral [15], and independently, by Crisan and Lyons [11]. After that,
many improvements were made by various authors. See e.g. Crisan and Lyons [10],
Crisan [4], [5], [6], [7], Crisan, Gaines and Lyons [12], Crisan, Del Moral and Lyons
[9], Crisan and Doucet [8], Del Moral and Guionnet [16], Del Moral and Miclo [17].
Later, Crisan and Xiong [13] proved a central limit type theorem for a new class
of hybrid filters as well as for the original branching particle filters based on Kurtz
and Xiong [26].
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In tradition, the partially observable optimal control problem is turned into
a full information optimal control problem governed by Zakai equation, which is
an SPDE driven by the observation process. However, this leads to an infinite
dimensional optimal control problem, which is difficult to solve. See e.g. Bensoussan
[2] for a systematic account. Recently, Wang and Wu [32] proposed a backward
separation approach in order to study partially observed optimal control. The
main idea is to decouple optimal control and state estimate by formally deducing
optimal control first and then computing optimal filtering. An advantage of the
approach is as follows. We use the original state and observation equation–which
are finite dimensional–to calculate the variation, rather than the Zakai equation
of the state based on the observation, which is infinite dimensional in general.
Making use of this separating technique, lots of complicated stochastic calculus
in infinite dimensional spaces are avoided. The approach is applicable to a broad
class of control systems, say, backward or forward-backward stochastic differential
equation (BSDE or FBSDE) systems. See e.g. Wang and Wu [33], Huang, Wang
and Xiong [24], Wu [37], Shi and Wu [30], Xiao and Wang [39, 40], Xiao [38], Wang,
Wu and Xiong [34, 35] for more details. See also Tang [31], Hu and Øksendal [22],
Øksendal and Sulem [29], Meng [28], where optimal filtering was not studied.

The rest of this paper is organized as follows. The next section establishes
several maximum principles for optimality of BSDEs and FBSDEs with partial
information. To illustrate the maximum principles, a linear-quadratic (LQ) optimal
control problem by means of BSDE is presented. Section 3 gives a brief introduction
to the theory of nonlinear filter. A branching particle system is used to approximate
the nonlinear filter in Section 4. Some numerical results will be presented in Section
5 to compare the particle filter, the optimal filter and the underlying state process.
Finally, Section 6 lists some concluding remarks.

2. Maximum principle

Maximum principle is a set of necessary conditions satisfied by optimal solutions,
which offers an approach for solving optimal control problems. This section is
concerned with optimal control of BSDEs and FBSDEs with partial information.
Two maximum principles for optimality are established, and an LQ example is used
to shed light on the application of the maximum principles. These results are taken
from the articles of Huang, Wang and Xiong [24], Wang, Wu and Xiong [34, 35].

2.1. The case of controlled BSDEs with partial information. We begin

with a complete filtered probability space (Ω,FW,Y , (FW,Y
t )0≤t≤1,P) on which an

R
m+d-valued standard Brownian motion (W,Y ) is defined, and let (FW,Y

t )0≤t≤1 be

the natural filtration generated by (W,Y ), and FW,Y = FW,Y
1 . If x : [0, 1]×Ω → S

is an Ft-adapted and square-integrable process, we write x ∈ L2
FW,Y (0, 1;S); if

x : Ω → S is an FW,Y
1 -measurable and square-integrable random variable, we write

x ∈ L2
FW,Y

1

(Ω;S).

Let U be a non-empty convex subset of Rk. Consider now a BSDE

(1)

{

−dyt = f(t, yt, zt, z̄t, vt)dt− ztdYt − z̄tdWt,

y1 = ξ,

where ξ ∈ L2
FW,Y

1

(Ω;Rn), v : [0, 1] × Ω → U is a control process, and f : [0, 1] ×
R

n+n×m+n×d × U → R
n is a continuous mapping and satisfies


