## Necessary and Sufficient Conditions of Doubly Weighted Hardy-Littlewood-Sobolev Inequality

Zuoshunhua Shi<sup>1</sup>, Wu Di<sup>1</sup> and Dunyan Yan<sup>2,\*</sup>

 <sup>1</sup> School of Mathematical Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
<sup>2</sup> School of Mathematical Sciences, University of Chinese Academy of Sciences, Beijing 100190, China

Received 9 December 2013; Accepted (in revised version) 24 February 2014

Available online 30 June 2014

**Abstract.** Using product and convolution theorems on Lorentz spaces, we characterize the sufficient and necessary conditions which ensure the validity of the doubly weighted Hardy-Littlewood-Sobolev inequality. It should be pointed out that we consider whole ranges of *p* and *q*, i.e.,  $0 and <math>0 < q \le \infty$ .

**Key Words**: Hölder's inequality, Young's inequality, Hardy-Littlewood-Sobolev inequality, Lorentz space.

AMS Subject Classifications: 42B20, 42B35

## 1 Introduction

The Riesz potential operator

$$I_{\alpha}(f)(x) = \int_{\mathbb{R}^n} \frac{f(y)}{|x-y|^{n-\alpha}} dy,$$

also called fractional integral operator, is bounded from  $L^p(\mathbb{R}^n)$  to  $L^q(\mathbb{R}^n)$ , provided that  $1 and <math>0 < \alpha < n$  satisfy

$$\frac{1}{p} - \frac{\alpha}{n} = \frac{1}{q}.$$

According to the property of  $L^p$  space, we have  $(L^p)^* = L^{p'}$ ,  $1 \le p < \infty$ . Thus the  $L^p \to L^q$ -boundedness of  $I_s$  is equivalent to Theorem 1.1.

http://www.global-sci.org/ata/

©2014 Global-Science Press

<sup>\*</sup>Corresponding author. *Email addresses:* shizuoshunhua11b@mails.ucas.ac.cn (Z. Shi), wudi08@mails.ucas.ac.cn (W. Di), ydunyan@ucas.ac.cn (D. Y. Yan)

**Theorem 1.1.** Suppose that  $f \in L^{p_1}(\mathbb{R}^n)$  and  $g \in L^{p_2}(\mathbb{R}^n)$ . If  $1 < p_1, p_2 < \infty$  and  $0 < \alpha < n$  satisfy

$$\frac{1}{p_1} + \frac{1}{p_2} + \frac{\alpha}{n} = 2$$

then

$$\left| \int_{\mathbb{R}^n} \int_{\mathbb{R}^n} \frac{f(x_1)g(x_2)}{|x_1 - x_2|^{\alpha}} dx_1 dx_2 \right| \le C \|f\|_{L^{p_1}(\mathbb{R}^n)} \|g\|_{L^{p_2}(\mathbb{R}^n)}$$
(1.1)

holds.

Theorem 1.1 was obtained by Hardy and Littlewood for the case n = 1 in [2] and by Sobolev for general n in [6]. Therefore, the inequality (1.1) is usually called the Hardy-Littlewood-Sobolev inequality in the literature. Stein and Weiss [7] considered the doubly weighted Hardy-Littlewood-Sobolev inequality and obtained Theorem 1.2 as follows.

**Theorem 1.2.** If  $1 < p,q < \infty$  and  $\alpha$ ,  $\beta$ ,  $\gamma$  satisfy the following conditions,

$$\frac{1}{p} + \frac{1}{q} + \frac{\alpha + \beta + \gamma}{n} = 2, \qquad (1.2a)$$

$$\alpha + \gamma \ge 0, \quad \alpha < \frac{n}{p'}, \quad \gamma < \frac{n}{q'}, \quad \beta < n,$$
 (1.2b)

$$\frac{1}{p} + \frac{1}{q} \ge 1, \tag{1.2c}$$

then

$$\left|\int_{\mathbb{R}^n}\int_{\mathbb{R}^n}\frac{f(x)g(y)}{|x|^{\alpha}|x-y|^{\beta}|y|^{\gamma}}dxdy\right| \leq C\|f\|_{L^p(\mathbb{R}^n)}\|g\|_{L^q(\mathbb{R}^n)}$$
(1.3)

holds for  $f \in L^p(\mathbb{R}^n)$  and  $g \in L^q(\mathbb{R}^n)$ .

Remark 1.1. In fact, both conditions (1.2a) and (1.2b) can easily imply

$$0 < \beta < n. \tag{1.4}$$

It was the reason why Stein regarded (1.4) as one of the conditions in [7].

Clearly, the conditions (1.2a), (1.2b) and (1.2c) are sufficient conditions which ensure the validity of the doubly weighted Hardy-Littlewood-Sobolev inequality. In this paper, we use novel methods and ideas to investigate the sufficient and necessary conditions which makes the doubly weighted Hardy-Littlewood-Sobolev inequality hold. In particular, we apply the properties of product and convolution of two functions on Lorentz spaces to establish the doubly weighted Hardy-Littlewood-Sobolev inequality. It should be pointed out that we will consider whole ranges of p and q, i.e.,  $0 and <math>0 < q \le \infty$ , which cover Theorem 1.1 and Theorem 1.2, and provide us with new insightful information. The Hardy-Littlewood-Sobolev inequality is widely used in Harmonic Analysis, as well as in partial differential equation.

Now we formulate our main results as follows:

194