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A SIMPLE FINITE ELEMENT METHOD FOR

NON-DIVERGENCE FORM ELLIPTIC EQUATIONS

LIN MU AND XIU YE

Abstract. We develop a simple finite element method for solving second order elliptic equations
in non-divergence form by combining least squares concept with discontinuous approximations.
This simple method has a symmetric and positive definite system and can be easily analyzed
and implemented. Also general meshes with polytopal element and hanging node can be used in
the method. We prove that our finite element solution approaches to the true solution when the
mesh size approaches to zero. Numerical examples are tested that demonstrate the robustness
and flexibility of the method.
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1. Introduction

We consider a elliptic equations in non-divergence form

A : D2u = f, in Ω,(1)

u = 0, on ∂Ω,(2)

where Ω is a convex polytopal domain in R
d with d = 2, 3. We assume that the

model problem (1)-(2) has a unique solution and the coefficient tensor A(x) is
uniformly elliptic.

Non-divergence form elliptic partial differential equations have many applica-
tions in the areas such as stochastic processes and game theory [3]. In recent years,
many numerical methods have been developed for second order elliptic equations
in non-divergence form [1, 2, 4, 5, 6, 7] and the references therein.

The non-divergence nature of the problems makes it difficult to develop and
analyze numerical algorithms for them since sophisticated Galerkin type numerical
techniques cannot be applied directly. The goal of this work is to introduce a
simple finite element method for non-divergence form partial differential equations
which can be easily implemented and analyzed. This finite element method based
on least squares methodology with discontinuous approximations has symmetric
and positive definite system and is flexible to work with general meshes. We prove
an optimal order error estimate for the finite element approximation in a discrete
H2 norm. However, our numerical results show optimal order of convergence in a
discrete H1 and H2 norm.

2. Finite Element Methods

Let Th be a partition of a domain Ω consisting of polygons in two dimension or
polyhedra in three dimension satisfying a set of conditions specified in [8]. Denote

Received by the editors on May 22, 2016, and accepted on October 14, 2016.
2000 Mathematics Subject Classification. 35R35, 49J40, 60G40.

306



FINITE ELEMENT FOR NON-DIVERGENCE FORM ELLIPTIC EQUATIONS 307

by Eh the set of all edges or flat faces in Th, and let E0
h = Eh\∂Ω be the set of all

interior edges or flat faces. For every element T ∈ Th, we denote by hT its diameter
and mesh size h = maxT∈Th

hT for Th.

We define a finite element space Vh as follows for k ≥ 2,

(3) Vh = {v ∈ L2(Ω) : v ∈ Pk(T ), T ∈ Th}.

Let elements T1 and T2 have e as a common edge/face. We define a jump of φ
on e as

[φ]e =

{

φ|∂T1
− φ|∂T2

, e ∈ E0
h,

φ, e ∈ ∂Ω.

The order of T1 and T2 is non-essential as long as the difference is taken in a
consistent way.

We introduce two bilinear forms as follows

s(v, w) =
∑

e∈Eh

∫

e

hs
e[v][w]ds +

∑

e∈E0

h

∫

e

ht
e[∇v] · [∇w]ds,

a(v, w) =
∑

T∈Th

(A : D2v, A : D2w)T + s(v, w),

where s and t are two integers such that s ≥ −3 and t ≥ −1. For simplicity, we
will let s = t = −1 in the rest of the paper.

Algorithm 1. A numerical approximation for (1)-(2) can be obtained by seeking
uh ∈ Vh satisfying the following equation:

(4) a(uh, v) = (f, A : D2v) ∀v ∈ Vh.

Lemma 1. The finite element scheme (4) has a unique solution.

Proof. It suffices to show that the solution of (4) is trivial if f = 0. Assuming f = 0
and taking v = uh in (4), we have

∑

T∈Th

(A : D2uh, A : D2uh)T + s(uh, uh) = 0,

which implies that A : D2uh = 0 on each element T and uh ∈ C1
0 (Ω). Thus uh is a

solution of the problem (1)-(2) with f = 0. The uniqueness of the solution of the
model problem (1)-(2) implies uh = 0. �

We define a semi-norm ||| · ||| as follows,

|||v|||
2
= a(v, v).

Similar to the proof of Lemma 1, we can prove that ||| · ||| define a norm in Vh.

3. Error Estimate

In this section, we will estimate the difference between the true solution u and
its finite element approximation uh from (4).

For any function ϕ ∈ H1(T ), the following trace inequality holds true (see [8]
for details):

(5) ‖ϕ‖2e ≤ C
(

h−1
T ‖ϕ‖2T + hT ‖∇ϕ‖2T

)

.


