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AN EFFICIENT APPROXIMATION FOR OPTIMAL DAMPING
IN MECHANICAL SYSTEMS

NINOSLAV TRUHAR, ZORAN TOMLJANOVIC, AND MATEA PUVACA

Abstract. This paper is concerned with an efficient algorithm for damping optimization in
mechanical systems with a prescribed structure. Our approach is based on the minimization of the
total energy of the system which is equivalent to the minimization of the trace of the corresponding
Lyapunov equation. Thus, the prescribed structure in our case means that a mechanical system
is close to a modally damped system. Although our approach is very efficient (as expected) for
mechanical systems close to modally damped system, our experiments show that for some cases
when systems are not modally damped, the proposed approach provides efficient approximation
of optimal damping.
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1. Nomenclature

We will use the following notation. Matrices written in the simple Roman fonts,
M, D or K, for example, will have O(n?) entries. Matrices written in mathematical
bold fonts, A, B will have O(m?) entries, where m = 2n. The symbol || - || stands
for the standard 2-norm.

2. Introduction

We consider a damped linear vibration system described by the differential equation
Mz + Di+ Kx =0,
.T(O) = Zo, 37(0) = i’o,

where M, D, K (called mass, damping and stiffness matrix, respectively) are real, sym-
metric matrices of order n with M, K positive definite and D = C, + C, where C, is
positive definite and presents internal damping, while C' represents external damping and
it is positive semidefinite. The matrix C, is usually taken as a small multiple of critical
damping or proportional damping. In this paper, we assume that internal damping is a
small multiple of mass matrix, that is, C,, = aM.

The problem of deriving optimal damping in some sense is an old and widely investi-
gated problem which has been considered by many authors.

For example, in [1] the question of placement of damping elements was investigated,
while in [2] the problem of periodic optimal control, which maximizes energy dissipation,
was considered.

On the other hand, the optimization problem, which considers only viscosity optimiza-
tion, was considered in the following papers [3], [4], [5], [6], [7] and [8].

In papers [9], [10] and [11], the authors have recemtly considered approximations based
on modal eigenvectors which provide an efficient calculation of objective functions. The
case of mechanical systems with a given force was considered in papers [12] and [13],
where the authors derived explicit formulas for objective functions for particular types
of mechanical systems, while in [14] it was shown how to compute eigenfrequencies of
structures composed of a series of inclined cables.
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The purpose of this paper is to present new results of approximation algorithms for
deriving optimal damping. As we will show, in some cases determination of optimal damp-
ing can be given by an explicit formula, while in some other cases we present a numerical
approach to determination of optimal damping which can be efficiently implemented.

We are going to use optimization criterion considered in many papers, like [15],[3], [6],
[5], [7]. This optimization criterion is given by the minimization requirement of the total
energy of the system, that is,

(1) /E(t) dt — min .

Since criterion (1) depends on the initial condition, the simplest way to correct this is to
take the average of (1) over all initial states of the unit total energy and a given frequency
range. It can be shown that this average corresponds to the trace of the solution of the
corresponding Lyapunov equation.

Since up to date an efficient general algorithm for the optimization of damping does not
exist, that is, available algorithms optimize only viscosities of dampers, not their positions,
we propose a simple and efficient approach to the overall damping optimization. With
this new approach, one can find optimal positions and corresponding damper viscosities
efficiently with satisfactory accuracy.

Our approach is based on the fact that for a modally damped mechanical system all
three matrices M, D and K can be simultaneously diagonalized. Thus, the main as-
sumption here will be that we have the case where M, D and K are simultaneously
diagonalizable or that they are close to the case when all three matrices can be simulta-
neously diagonalized. Although this approach has been widely used by different scientific
communities, especially in engineering, in this paper we propose a slightly different per-
spective, which will allow us to determine optimal damping very efficiently for a certain
structure of mechanical systems, as will be demonstrated later.

Moreover, since only the damping matrix D(v) depends on parameters, usual ap-
proaches to viscosity optimization (v) assume preprocessing based on diagonalization of
the mass and stiffness matrices, M and K. On the other hand, in this paper we propose
a new approach, which is based on diagonalization of the damping matrix D(v), and then
calculation of optimal viscosities. As we will show in this paper, this approach can be very
efficient for structured systems which allow us to determine optimal viscosities, explicitly
or numerically considerably faster.

For estimation of optimal viscosity for given damper positions we propose a new al-
gorithm based on the simple “reduction” (truncation) of the corresponding Lyapunov
equation, which usually speeds up the procedure by at least 40 times, while for the opti-
mization of damper positions we propose a new heuristic. Both algorithms are based on
a certain heuristic and unfortunately we do not have bounds for their accuracy, but as
exemplified in the last section by the Lyapunov equation of modest dimensions (n < 100),
they perform very well, thus we assume that the obtained results will be even better for
bigger dimensions.

Currently, two types of algorithms are in use for the estimation of optimal viscosity
(for given damper positions). The first type are the Newton-type algorithms for one-
dimensional problems, which use some Lyapunov solvers, and the second type are the
algorithms which explicitly calculate the trace of the solution of the corresponding Lya-
punov equation.

Algorithms of the second type are presented in [15], [6] or [7], and they consider the
case with one or more dampers with the same viscosity.

On the other hand, the Newton-type algorithm for the case with » > 1 different dampers
was proposed in [16]. As shown in [7], the algorithm proposed in [16] can produce a poor
result due to the problems with determination of the starting point.

The paper is organized as follows. In Section 2, we precisely define problem setting,
while in Section 3, we present an approximation for our objective function. The problem of



