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ON THE CONVERGENCE OF β-SCHEMES

NAN JIANG

Abstract. Yang’s wavewise entropy inequality [19] is verified for β-schemes which, when m = 2
and under a mild technique condition, guarantees the convergence of the schemes to the entropy
solutions of convex conservation laws in one-dimensional scalar case. These schemes, constructed
by S. Osher and S. Chakravarthy [13], are based on unwinding principle and use E-schemes as
building blocks with simple flux limiters, without which all of them are even linearly unstable.
The total variation diminishing property of these methods was established in the original work of
S. Osher and S. Chakravarthy.
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1. Introduction

We consider numerical approximations to the scalar conservation laws

(1)

{

ut + f(u)x = 0,
u(x, 0) = u0(x),

where f ∈ C1(R) is convex, and u0 ∈ BV (R). Here BV stands for the subspace
of L1

loc consisting of functions with bounded total variation. For the numerical
methods concerned, let λ = τ

h
, where h and τ are spatial and temporal steps

respectively, and un
k = u(xk, tn) be the nodal values of the piecewise constant mesh

function uh(x, t) approximating the solution of (1). The numerical schemes admit
conservative form

(2) un+1
k = H(un

k−p, · · · , u
n
k+p;λ) = un

k − λ(gn
k+ 1

2

− gn
k− 1

2

),

where the numerical flux g is given by

(3) gn
k+ 1

2

= gk+ 1
2
[un

k ],

and

(4) gk+ 1
2
[v] = g(vk−p+1, vk−p+2, · · · , vk, · · · , vk+p),

for any data {vj}. The function g is Lipschitz continuous with respect to its 2p
arguments and is consistent with the conservation law in the sense that

(5) g(u, u, · · · , u) ≡ f(u).

The schemes that we are interested in are special cases of the general β-schemes
when m = 2, which were introduced by S. Osher and S. Chakravarthy [1, 13] in
the 80s. The entire families of β-schemes are defined for 0 < β ≤ (m

(

2m
m

)

)−1,
where m is an integer between 2 and 8. These schemes are 2m− 1 order accurate
(except at isolated critical points), variation diminishing, 2m+1 point band width,
conservative approximations to scalar conservation laws. Although the numerical
results have been shown [1, 13] to be extremely good, the entropy convergence of
these schemes have been open. Our goal of this paper is to show that, when m = 2,
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β-schemes indeed persist entropy consistency for homogeneous scalar convex con-
servation laws. The proof of the convergence is an application of Yang’s wavewise
entropy inequality (WEI) framework [19], of which he has used to establish the
entropy convergence of generalized MUSCL schemes and a class of schemes using
flux limiters discussed by Sweby [15]. Recently, by using Yang’s convergence crite-
ria that derived from his WEI framework, the author [9, 6] has shown the entropy
convergence of van Leer’s flux limiter schemes, as well as Osher-Chakravarthy’s α
schemes for m = 2 [1, 13]. The corresponding convergence results of Yang and the
author, for semi-discrete schemes, can be found in [7, 8, 10, 18, 17].

The paper is organized as follows. In section 2, we review the notions of the
extremum paths, and then we establish the extremum traceableness of general
TVD schemes, which is necessary for analyzing the entropy convergence of the
schemes that will be given in the next section. In section 3, we present one of
Yang’s convergence criteria with weaker condition, an important entropy estimate,
and finally the main result.

Now we introduce the β-schemes for the case ofm = 2. Throughout the paper, to
improve the readability, we use the shorthand notations of fn

k := f(un
k ), ∆un

k± 1
2

=

±(un
k±1 − un

k ), and fn
k± 1

2

:= ∆fn
k± 1

2

= ±(fn
k±1 − fn

k ). Also, whenever there is no

ambiguity in the context, we employ the simplified notations: uk := un+1
k , uk := un

k ,

fk := fn
k , and f±

k± 1
2

:= (fn
k± 1

2

)±, where k and n are the spatial and temporal indexes

respectively.
Let gE

k+ 1
2

:= gE(un
k , u

n
k+1) be the flux of an E-scheme [14] that is characterized

by

(6) sgn (un
k+1 − un

k )[g
E
k+ 1

2

− f(u) ] ≤ 0,

for all u in between un
k and un

k+1. Then the flux differences are defined by

(7) f+
k+ 1

2

= fk+1 − gE
k+ 1

2

,

and

(8) f−

k+ 1
2

= gE
k+ 1

2

− fk.

At the time level t = tn, for all k, we define a series of local CFL numbers

(9) ν+
k+ 1

2

=
λf+

k+ 1
2

uk+ 1
2

, ν−
k+ 1

2

=
λf−

k+ 1
2

uk+ 1
2

.

Clearly, we have ν+
k+ 1

2

≥ 0 and ν−
k+ 1

2

≤ 0. For convenience, we also set the ratios

(10) r+k =
f+
k− 1

2

f+
k+ 1

2

, r−k =
f−

k+ 1
2

f−

k− 1
2

.

The “minmod” operator is given by

(11) minmod(x, y) =







x, if |x| ≤ |y| and xy > 0,
y, if |x| > |y| and xy > 0,
0, if xy ≤ 0,


