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MULTIPLE NONLINEAR EIGENVALUES OF SMOOTH

RANK-DEFICIENT MATRICES

ANDREW BINDER AND JORGE REBAZA

Abstract. A smooth block LU factorization, coupled with Newton’s method, is used to com-
pute multiple nonlinear eigenvalues of smooth rank-deficient matrix functions A(λ). We provide
conditions for such factorizations to exist and show that the algorithm for the computation of
multiple nonlinear eigenvalues converges quadratically, and is more efficient than one using QR

factorizations. A possible approach for cubic convergence is also discussed. Several numerical
examples are given for general and random nonlinear matrix functions A(λ).
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1. Introduction

The factorization of matrix functions A(λ), where λ is a parameter in general
complex, has received great attention due to its importance and applications in
several areas including linear algebra, matrix computations and dynamical systems.
Smooth factorizations in particular [3], where the factors are as smooth as A(λ), are
a central tool for the computation of heteroclinic and homoclinic orbits in dynamical
systems [4], [8].

We say λ is a nonlinear eigenvalue of A(λ) if it satisfies

(1) A(λ)v = 0.

The vector v 6= 0 is called the corresponding nonlinear eigenvector. In the very
special case when A(λ) = B − λI, for some constant matrix B, then λ and v
are just the ordinary (linear) eigenvalue and eigenvector respectively. Nonlinear
eigenvalues come from a long list of applications including the dynamical analysis
of structures, singularities in elastic materials, and acoustic emissions of high speed
trains. For an extensive list of problems related to nonlinear eigenvalues, see [1].

There is reliable software (e.g. MATLAB) that computes such nonlinear eigenvalues
for the case when A(λ) is a polynomial function. Some algorithms for the cases
where A(λ) is a general, large, and sparse matrix function have also been developed
[11]. One of the main ideas of these methods is to linearize the problem in order to
apply linear tools (such as generalized Schur factorizations) to the linearized system
and preserve the structure of the original problem.

We explore the idea of computing multiple nonlinear eigenvalues for general, rank-
deficient, and smooth matrix functions A(λ) via rank-revealing LU factorizations
coupled with Newton’s method. We assume that A(λ) is relatively small and dense.
We first introduce the necessary theory to make sure that such factorizations in-
volve smooth factors; we then develop an algorithm, study its convergence proper-
ties, and explore a higher order of convergence. A similar approach was considered
in [7] using the classical QR factorization, and we take care of comparing their
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corresponding efficiencies. A generalization of this QR approach to compute mul-
tiple nonlinear eigenvalues of matrix functions A(α, λ), where λ is the eigenvalue
parameter, is considered in [2].

2. LU Factorization of a smooth nonsingular matrix

Lemma 1. All full rank square matrices A(λ) ∈ C1 with nonsingular leading prin-

cipal submatrices have a unique L(λ)U(λ) factorization, where L(λ) ∈ C1 is unit

lower triangular, and U(λ) ∈ C1 is upper triangular.

Proof. Let A(0) = L(0)U(0), with L(0) unit lower triangular and U(0) upper
triangular. If the sought factorization is feasible, let A(λ) = L(λ)U(λ). Taking the
derivative of A(λ) and solving for U ′(λ), we get:

(2) U ′(λ) = L−1(λ)A′(λ) − L−1(λ)L′(λ)U(λ).

Since U ′(λ) must be upper triangular,

(L−1(λ)A′(λ))i,1 = (L−1(λ)L′(λ))i,1U(λ)1,1, i ≥ 2

(L−1(λ)A′(λ))i,2 = (L−1(λ)L′(λ))i,1U(λ)1,2 + (L−1(λ)L(λ))i,2U(λ)2,2, i ≥ 3.

...

This system of linear equations is solvable for B(λ) = (L−1(λ)L′(λ))i,j such that
i > j. Similarly, we have

(3) L′(λ) = A′(λ)U−1(λ)− L(λ)U ′(λ)U−1(λ).

Since L′(λ) must be lower triangular,

(A′(λ)U−1(λ))1,i = L(λ)1,1(U
′(λ)U−1(λ))1,i, i ≥ 2

(A′(λ)U−1(λ))2,i = L(λ)2,1(U
′(λ)U−1(λ))1,i + L(λ)2,2(U

′(λ)U−1(λ))2,i, i ≥ 3.

...

This system of equations is solvable for C(λ) = (U ′(λ)U−1(λ))i,j such that i < j.
The diagonal entries of U(λ) are completely determined from A(λ) = L(λ)U(λ).
Therefore, the diagonal entries of C(λ) depend smoothly on A(λ) and L(λ). Thus,
the system (2), (3) with A(0) = L(0)U(0) is uniquely solvable and provides the
sought smooth factorization. �

3. LU factorization for a smooth rank-deficient matrix

Terminology. We say a matrix A has a block LU factorization when A = LU

and the matrices L and U satisfy: L =

[
L1,1 0
L2,1 I

]
, L1,1 is a unit lower triangular

matrix, U =

[
U1,1 U1,2

0 U2,2

]
, and U1,1 is upper triangular.

Theorem 2. Let A(λ) be an n×n C1 matrix function on some D ⊂ C such that

for some λ0 ∈ D, A(λ0) has rank n −m, m < n. Assume there are permutation

matrices P1, P2 such that P1A(λ0)P2 has a block LU factorization P1A(λ0)P2 =
L0U0. Then, there is a neighborhood N(λ0) ⊂ D such that P1A(λ)P2 has a block

LU factorization

(4) P1A(λ)P2 = L(λ)U(λ), ∀ λ ∈ N(λ0),

with L(λ), U(λ) ∈ C1(D), satisfying that L(λ0) = L0 and U(λ0) = U0.


