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MULTISCALE NUMERICAL ALGORITHM FOR 3-D

MAXWELL’S EQUATIONS WITH MEMORY EFFECTS IN

COMPOSITE MATERIALS

YA ZHANG, LIQUN CAO, WALTER ALLEGRETTO, AND YANPING LIN

Abstract. This paper discusses the multiscale method for the time-dependent Maxwell’s equa-
tions with memory effects in composite materials. The main difficulty is that one cannot use the
usual multiscale asymptotic method (cf. [25, 4]) to solve this problem, due to the complication
of the memory terms. The key steps addressed in this paper are to transfer the original integro-
differential equations to the stationary Maxwell’s equations by using the Laplace transform, to
employ the multiscale asymptotic method to solve the stationary Maxwell’s equations, and then to
obtain the computational solution of the original problem by employing a quadrature formula for
computing the inverse Laplace transform. Numerical simulations are then carried out to validate
the multiscale numerical algorithm in the present paper.

Key words. time-dependent Maxwell’s equations, memory effects, multiscale asymptotic expan-
sion, Laplace transform, composite materials.

1. Introduction

The classical macroscopic electromagnetic field is described by four vector-valued
functions of position x ∈ R3 and time t ∈ R denoted by E, D, H, B. The funda-
mental field vectorsE, H are the electric and magnetic field intensities, respectively.
The vector-valued functions D, B denote the electric displacement and magnetic
induction, respectively. The classical macroscopic Maxwell’s equations are given
by:

(1)





∇×E+
∂B

∂t
= 0,

∇×H− ∂D

∂t
= J,

∇ ·D = ρ,

∇ ·B = 0,

where ρ(x, t), J(x, t) are the electric charge density and the source current density,
respectively.

The general form of the constitutive laws are the following:

(2) D = ǫE+

∫ t

0

{
σE(x) + νE(x, t− τ)

}
E(x, τ)dτ

(3) B = µH+

∫ t

0

{
σH(x) + νH(x, t− τ)

}
H(x, τ)dτ,

where ǫ = (ǫij) and µ = (µij) are the electric permittivity and the magnetic perme-
ability of the media, respectively; σE = (σE

ij), ν
E(x, t) are the electric conductivity
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Figure 1. (a) Domain Ω; (b) the reference cell Q.

that characterizes the current density and the displacement susceptibility kernel
function, respectively;
σH = (σH

ij ), ν
H(x, t) are the magnetic conductivity that characterizes the current

density and the magnetic susceptibility, respectively. These are 3 × 3 positive-
definite matrix-valued functions of position x ∈ R3 in heterogeneous media. In the
homogeneous case they are independent of x. In the isotropic case these parameters
are scalars or diagonal matrices.

In this paper, we assume that σH = νH = 0. From (1)-(3), by eliminating the
magnetic field H, we obtain

(4)
ǫ(x)

∂2E(x, t)

∂t2
+ (σE(x) + νE(x, 0))

∂E(x, t)

∂t
+∇× (µ−1(x)∇×E)

+
∂νE

∂t
(x, 0)E(x, t) +

∫ t

0

∂2νE(x, t− τ)

∂t2
E(x, τ)dτ = − ∂

∂t
J(x, t),

where µ−1(x) denotes the inverse matrix of µ(x).
Suppose that Ω ⊂ R3 is a bounded polygonal convex domain or a smooth do-

main with a Lipschitz continuous boundary ∂Ω with a periodic microstructure as
illustrated in Fig.1 (a) and (b). For convenience, we replace ∇×u with curl u. We
then consider the following Maxwell’s equations with rapidly oscillating coefficients:

(5)





B(
x

ε
)
∂2Eε(x, t)

∂t2
+ C(

x

ε
)
∂Eε(x, t)

∂t
+G(

x

ε
)Eε(x, t) + curl(A(

x

ε
)curlEε)

+

∫ t

0

K(
x

ε
, t− τ)Eε(x, τ)dτ = f(x, t), (x, t) ∈ Ω× (0, T )

Eε × n = 0, (x, t) ∈ ∂Ω× (0, T )

Eε(x, 0) = E0(x),
∂Eε(x, 0)

∂t
= E1(x),

Here ε denotes a small periodic parameter, which is the relative size of the unit
cell. The matrix-valued functions A(xε ), B(xε ), C(

x
ε ), G(

x
ε ), K(xε , t− τ), and the

vector-valued functions f(x, t), E0(x), E1(x) are known functions, n = (n1, n2, n3)
is the outward unit normal to ∂Ω.

We first define the curl of a distribution u = (u1, u2, u3) of D′(Ω)3 by

curl u = (
∂u3

∂x2
− ∂u2

∂x3
,
∂u1

∂x3
− ∂u3

∂x1
,
∂u2

∂x1
− ∂u1

∂x2
).


