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EXACT FINITE DIFFERENCE SCHEMES FOR SOLVING

HELMHOLTZ EQUATION AT ANY WAVENUMBER

YAU SHU WONG AND GUANGRUI LI

Abstract. In this study, we consider new finite difference schemes for solving the Helmholtz
equation. Novel difference schemes which do not introduce truncation error are presented, conse-
quently the exact solution for the Helmholtz equation can be computed numerically. The most
important features of the new schemes are that while the resulting linear system has the same
simple structure as those derived from the standard central difference method, the technique is
capable of solving Helmholtz equation at any wavenumber without using a fine mesh. The proof
of the uniqueness for the discretized Helmholtz equation is reported. The power of this technique
is illustrated by comparing numerical solutions for solving one- and two-dimensional Helmholtz
equations using the standard second-order central finite difference and the novel finite difference
schemes.
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1. Introduction

The study of wave phenomena is important in many areas of science and engineer-
ing. The Helmholtz equation arises from time-harmonic wave propagation, and the
solutions are frequently required in many applications such as aero-acoustic, under-
water acoustics, electromagnetic wave scattering, and geophysical problems. Finite
difference methods are commonly used to solve the Helmholtz equation. In addition
to the standard central finite difference, Sutmann [16] derived a new compact finite
difference scheme of sixth order for the Helmholtz equation and the convergence
characteristics and accuracy were compared for a broad range of wavenumbers.
Accurate high order finite difference methods were reported in Singer and Turkel
[14, 15], Harari and Turkel [10]. A new nine-point sixth-order accurate compact
finite-difference method for solving the Helmholtz equation in one and two dimen-
sions was developed and analyzed in [13]. Other numerical techniques such as finite
element and spectral methods have been applied to solve the problem. Babuška
and Ihlenburg [11] used the h-version of the finite element method with piecewise
linear approximation to solve a one-dimensional model problem, Babuška et al. [3]
presented a systematic analysis of a posteriori estimation for finite element solu-
tions . Harari and Magoulés [9] considered the Least-Squares stabilization of finite
element computation for the Helmholtz equation. Babuška and Sauter [4] found
that the solution of the Galerkin finite element method differs significantly from the
best approximation with increasing wavenumber and claimed that it is impossible
to eliminate the so-called pollution effect. A coupled finite-infinite element method
was described, formulated and analyzed for parallel computations by Autrique and
Magoulés [2]. Bao et. al. [5] considered the the pollution effect and explored the
feasibility of a local spectral method, the discrete singular convolution algorithm
for solving the Helmholtz equation with high wavenumbers. Recently, Gitteson et.
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al. [8] proposed discontinous Galerkin finite element methods to capture the oscil-
latory behavior of the wave solution. It should be pointed out that all numerical
methods require a very fine mesh in order to ensure the accuracy of the computed
solutions at high wavenumbers.

The mathematical formulation for time harmonic wave propagation in the ho-
mogeneous media is given by the Helmholtz equation:

(1) ∆U + k2U = 0.

where k = ω/c denotes the wavenumber which is related to the frequency of the
wave propagation ω and c is the speed of sound.

Even though tremendous progress has been reported in the areas of computa-
tional techniques for partial differential equations, solving a linear Helmholtz equa-
tion at high wavenumbers numerically remains as one of the most difficult tasks in
scientific computing. At a high wavenumber, the solution of the Helmholtz equation
is highly oscillatory. Suppose the mesh size of a numerical discretization is h, it has
generally been recognized that to accurately capture the oscillatory behavior, it is
necessary to require kh to be small. However, numerical simulation and theoretical
study has confirmed that even when kh is fixed, the numerical accuracy deteriorates
rapidly as k increases. This is known as the ”pollution effect” [4]. The pollution
error can only be eliminated completely for one-dimensional equation, and not for
two- and three-dimensional problems. Moreover, to ensure an accurate numerical
solution, it is essential to enforce the condition k2h < 1. However, this would imply
that the number of the discretized equations is proportional to h−3 or k3. This will
then lead to an extremely huge system of linear equations. It should be mentioned
that the resulting system is highly indefinite for large wavenumbers, and many it-
erative techniques such as the conjugate gradient and multigrid methods are not
capable of solving the indefinite systems.

Developing efficient and accurate numerical solutions for the Helmholtz equation
at high wavenumbers is an active research topic. Although it has been reported
in many engineering literatures that using 10 to 12 grid points per wavelength is
sufficient to produce a reasonable accuracy for many problems, this general rule,
however, can not be used when dealing with Helmholtz equation at highwave num-
bers.

In this paper, we consider a novel finite difference approach which satisfies ex-
actly the interior points of the Helmholtz equation at any wavenumber. Using the
same idea, we also derive the finite difference for the radiation boundary conditions.
The most important result presented in this work is that the finite difference scheme
is constructed so that the solution of the discretized equations satisfies the solution
of the Helmhotz equation exactly at the interior grid points as well as the boundary.
Since no discretization error is introduced, the numerical solution can be computed
for all wavenumbers even if kh and k2h is not small. Numerical simulations con-
firm that the new schemes produce exact numerical solution for one-dimensional
problem. For a two-dimensional Helmholtz equation, accurate numerical solutions
can be achieved even for the case kh = 1.5 and k2h = 450. To our knowledge, the
exact finite difference scheme has not been reported and demonstrated for solving
Helmotz equation especially for applications to high wavenumbers.

The present study is organized as follows. In Section 2, we consider finite dif-
ference approximations for the Helmholtz equation. A novel difference approach
is presented, so that the resulting difference equations satisfy exactly the original


