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Abstract. In this work, we concern with the numerical approach for delay differen-
tial equations with random coefficients. We first show that the exact solution of the
problem considered admits good regularity in the random space, provided that the
given data satisfy some reasonable assumptions. A stochastic collocation method is
proposed to approximate the solution in the random space, and we use the Legen-
dre spectral collocation method to solve the resulting deterministic delay differential
equations. Convergence property of the proposed method is analyzed. It is shown that
the numerical method yields the familiar exponential order of convergence in both the
random space and the time space. Numerical examples are given to illustrate the the-
oretical results.
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1 Introduction

Using delay differential equations (DDEs) to model biological/engineer systems has a
long history, dating to Malthus, Verhulst, Lotka and Volterra. Recently, DDE models
have been arisen in many diverse applications including infectious disease dynamics
including primary infection [11], immune response [24], tumor growth [23] and neural
networks [4], to name a few. As the primary goal for using these models is to better our
understanding of real word phenomena, it is becoming clear that the simple models can
not capture the whole dynamics observed in natural systems. Thus, in real applications,
the systems used are usually build up by a large number of DDEs with a lot of given data.
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The linear systems of DDEs admit the following form
u(t)=A(tu(t)+B(H)u(t—q(t)), tel:=[0,T], (1.1)

where u = (u1,---,uN)T is a vector of N unknown functions, and A, B are coefficient
matrices in RN*N. The delay function g(t) is assumed to satisfy

0<gq(t)<t, t€(0,T], g(0)=g>0.

There are various types of delays in real applications [3], and here we will consider two
widely used types of them, namely,

Constantdelay: qg(t)=1t>0, (1.2a)
Pantographdelay: t—q(t)=qt, 0<g<l. (1.2b)

The following initial conditions are needed for problem (1.1)

u(t)=uy, te[-1,0], forconstantdelay, (1.3a)
u(0)=uy, forpantographdelay. (1.3b)

Generally speaking, the value of interest u is computed based on the input data
(A(t),B(t),up) which are provided mainly by experimental measurements or a priori
knowledge. It turns out that in many practical applications the input data are not known
precisely a priori, which due to error in experiments and/or less of knowledge, namely,
uncertainty in the given data. A popular way to deal with such an issue is to model these
uncertain data as random variables /random functions [8]. For the context of delay differ-
ential equations, this will introduces the following random/parametric delay differential
equations

u'(t,0) =A(LE)u(t,d) +B(Lu(t—q(1),C), tel:=[0,T],
(t)=up, t€[—q,0], forconstantdelay, (1.4)
(0)=ug, forpantographdelay,

[

u

where (f =(&1,---,Cm) is a random vector of M random parameters. One usually assumes
that the random parameters are independent with each other, and further more, there is
a corresponding probability density function p(¢;) for each random parameter ¢; in its
supporting domain [a;,b;].

Such a framework for problems with uncertain input has been widely used by re-
searchers for partial/ordinary differential equations (PDE/ODE) models [8,28,29], and
the resulting problems are also known as stochastic PDEs/ODEs. Stochastic modeling
approaches for such problems can be categorized as either non-intrusive or intrusive. In-
trusive approaches, such as generalized polynomial chaos methods (see, e.g., [8,28] and
references therein), usually result in deterministic coupled systems, and this require the



