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Abstract

This paper presents a cell-centered Godunov method based on staggered data distribu-

tion in Eulerian framework. The motivation is to reduce the intrinsic entropy dissipation

of classical Godunov methods in the calculation of an isentropic or rarefaction flow. At

the same time, the property of accurate shock capturing is also retained. By analyzing the

factors that cause nonphysical entropy in the conventional Godunov methods, we introduce

two velocities rather than a single velocity in a cell to reduce kinetic energy dissipation.

A series of redistribution strategies are adopted to update subcell quantities in order to

improve accuracy. Numerical examples validate that the present method can dramatically

reduce nonphysical entropy increase.
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1. Introduction

A cell-centered Godunov method always generates numerical entropy increase, even if in

isentropic flows. A typical phenomenon is the over-predicting temperature in low internal en-

ergy flows. For example, when two fluid streams recede from each other, a rarefying region

between them is generated. However, numerical solutions consistently indicate a temperature

rise rather than a correct decrease. In general, such temperature anomaly belongs to a kind of

entropy error [15, 16]. It appears in the extensive Godunov-type finite volume methods, such

as exact or approximate Riemann solvers, and the flux splitting methods [23] in the Eulerian

and the Lagrangian frameworks. Solving this problem has theoretical and practical interests,

such as multi-dimensional simulation of the strong compression phase in Inertial Confinement

Fusion. A possible numerical result is that the compressed air has wrong compression ratio
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with the experimental comparison. Therefore, it is necessary to design one numerical method

that can remove the entropy error in the rarefying problems but also retain the property of

accurate shock capturing simultaneously.

Many researchers have attempted to solve these kinds of problems. One exploration of re-

ducing such overheating phenomenon is to employ high-order scheme or refine grids, as shown

in [1,6]. Regretfully, the excessive increase in temperature does not reduce by refining the mesh

size, decreasing the time step [16], or increasing the order of accuracy [11]. For very low inter-

nal energy flows, high-order conservative schemes may show less ability to obtain results with

sufficient accuracy [11] due to difficulty in maintaining positivity. Historically speaking, the

first work to connect the phenomenon with entropy conservation is Tadmor [21]. He developed

a semi-discrete entropy-conservative (EC) flux for smooth flows, and a proper dissipation term

is added for non-smooth flows. Roe [20] overcame the difficulty of explicit form of the EC flux

and proposed an explicit entropy-stable flux for the Eulerian gas dynamics equations. However,

their methods are aimed at ensuring consistency of numerical methods and thermodynamics

relation, and not at solving the isentropic problem. In a series of works [14–16], Liou found that

this temperature increase is solely connected to entropy rise. Furthermore, he regarded that

the entropy rise is rooted in the pressure flux in a finite volume formulation and is theoretically

inevitable for all existing numerical flux schemes used in the finite volume setting. In order

to solve this problem, a point value characteristics method was adopted [15]. Cocchi et al. [8]

suggested a non-conservative formulation for the energy equation to decrease the nonphysical

temperature increase. Clearly, these non-conservative methods are not suited for flows where

shock waves and isentropic flows coexist. In the Lagrangian frame, Hui and Kudriakov [12] ex-

pressed similar viewpoint with those in [14–16] in an earlier study and proposed a shock-tracking

method. Their method can remove many numerical defects in one-dimensional calculations, but

can not be extended to multi-dimensional cases due to the introduction of exact Riemann so-

lution. Braeunig [2] and Paulin et al. [19] proposed an Enhanced Entropy Behavior method

to improve effect of computing rarefaction waves. The main work is to set a switch at a cell

interface to distinguish compressible and expansion states. Similar work has been performed by

Maire et al. [17] with Tadmor’s theory, whose numerical scheme adopts a hybrid form to treat

compression and rarefaction cases and the setting idea of switch is identical in essence to that

in [2]. However, designing a correct criterion itself is a huge challenge for a cell-centered method.

In fact, a pure rarefaction wave in physics may have alternative compressive and expansion be-

haviors at the discrete level. In general, this method does not preserve grid-convergence and

thus the entropy error might not decrease with the grid refinement.

In our understanding, there are two factors that might cause nonphysical entropy errors.

One factor is the excessive dissipation in the numerical flux, as mentioned above, which has

close relation with criterion to cell state. In conventional Godunov methods, the compressible

or expansion state of a cell is a combination of all boundaries working simultaneously, and thus

it results in difficulty to modify viscosity in a single Riemann solver with local initial inputs.

Another is the momentum average in Godunov method, which causes the loss of kinetic en-

ergy and further leads to the increase of internal energy [28]. In fact, there are two stages

in a Godunov-type scheme to update flow variables: the first stage is evolution procedure of

the numerical fluxes across a cell interface and the second is the averaging procedure for the

reconstruction of constant state inside each cell. The momentum average in the second stage

can induce kinetic energy dissipation. Furthermore, Thornber et al. [22] pointed out that the

amount of numerical entropy increase is proportional to the velocity jump squared.


