ARBITRARILY HIGH-ORDER ENERGY-CONSERVING METHODS FOR HAMILTONIAN PROBLEMS WITH QUADRATIC HOLONOMIC CONSTRAINTS*

Pierluigi Amodio
Dipartimento di Matematica, Università di Bari, Italy
Email: pierluigi.amodio@uniba.it
Luigi Brugnano ${ }^{1)}$
Dipartimento di Matematica e Informatica "U. Dini", Università di Firenze, Italy
Email: luigi.brugnano@unifi.it
Gianluca Frasca-Caccia
Dipartimento di Matematica, Università di Salerno, Italy
Email: gfrascacaccia@unisa.it
Felice Iavernaro
Dipartimento di Matematica, Università di Bari, Italy
Email: felice.iavernaro@uniba.it

Abstract

In this paper, we define arbitrarily high-order energy-conserving methods for Hamiltonian systems with quadratic holonomic constraints. The derivation of the methods is made within the so-called line integral framework. Numerical tests to illustrate the theoretical findings are presented.

Mathematics subject classification: 65P10, 65L80, 65L06.
Key words: Constrained Hamiltonian systems, Quadratic holonomic constraints, Energyconserving methods, Line integral methods, Hamiltonian Boundary Value Methods, HBVMs.

1. Introduction

In recent years, much interest has been given to the modeling and/or simulation of tethered systems, where the dynamics of interconnected bodies is studied (see, e.g. [2, 25-27,33, 34, 40, $42-45]$). It turns out that the underlying dynamics is often described by a Hamiltonian system, for which the total energy is conserved.

Motivated by this fact, we here investigate the numerical approximation of a constrained Hamiltonian dynamics, described by the separable Hamiltonian

$$
\begin{equation*}
H(q, p)=\frac{1}{2} p^{\top} M^{-1} p-U(q), \quad q, p \in \mathbb{R}^{m} \tag{1.1}
\end{equation*}
$$

where M is a symmetric and positive-definite (SPD) matrix, subject to ν quadratic holonomic constraints,

$$
\begin{equation*}
g(q)=0 \in \mathbb{R}^{\nu}, \quad \nu \leq m, \tag{1.2}
\end{equation*}
$$

[^0]i.e. the entries of g are quadratic polynomials. Hereafter, we shall assume all points be regular for the constraints, i.e. $\nabla g(q) \in \mathbb{R}^{m \times \nu}$ has full column rank or, equivalently,
\[

$$
\begin{equation*}
\nabla g(q)^{\top} M^{-1} \nabla g(q) \in \mathbb{R}^{\nu \times \nu} \quad \text { is } \quad \mathrm{SPD} . \tag{1.3}
\end{equation*}
$$

\]

Moreover, we shall assume that its smallest eigenvalue is bounded away from 0 , in the domain of interest. Also, for sake of simplicity, in the same domain the potential U will be assumed to be analytic.

It is well-known that the problem defined by (1.1)-(1.2) can be cast in Hamiltonian form by defining the augmented Hamiltonian

$$
\begin{equation*}
\hat{H}(q, p, \lambda)=H(q, p)+\lambda^{\top} g(q) \tag{1.4}
\end{equation*}
$$

where λ is the vector of the Lagrange multipliers. The resulting constrained Hamiltonian system reads

$$
\begin{equation*}
\dot{q}=M^{-1} p, \quad \dot{p}=\nabla U(q)-\nabla g(q) \lambda, \quad g(q)=0, \quad t \in[0, T], \tag{1.5}
\end{equation*}
$$

and is subject to consistent initial conditions

$$
\begin{equation*}
q(0)=q_{0}, \quad p(0)=p_{0} \tag{1.6}
\end{equation*}
$$

such that

$$
\begin{equation*}
g\left(q_{0}\right)=0, \quad \nabla g\left(q_{0}\right)^{\top} M^{-1} p_{0}=0 . \tag{1.7}
\end{equation*}
$$

Clearly, $H(q, p) \equiv \hat{H}(q, p, \lambda)$, provided that the constraints (1.2) are satisfied, and a straightforward calculation proves that both are conserved along the solution trajectory.

We notice that the condition $g\left(q_{0}\right)=0$ ensures that q_{0} belongs to the manifold

$$
\begin{equation*}
\mathcal{M}=\left\{q \in \mathbb{R}^{m}: g(q)=0\right\}, \tag{1.8}
\end{equation*}
$$

as required by the constraints, whereas the condition $\nabla g\left(q_{0}\right)^{\top} M^{-1} p_{0}=0$ means that the motion initially stays on the tangent space to \mathcal{M} at q_{0}. This condition is satisfied by all points on the solution trajectory, since, in order for the constraints to be conserved, the following condition needs to be satisfied as well:

$$
\begin{equation*}
\dot{g}(q)=\nabla g(q)^{\top} \dot{q}=\nabla g(q)^{\top} M^{-1} p=0 \in \mathbb{R}^{\nu} \tag{1.9}
\end{equation*}
$$

These latter constraints are usually referred to as hidden constraints, and allow the derivation of the vector of the Lagrange multiplier λ. In fact, from (1.9) and (1.5)-(1.6), one obtains

$$
\begin{align*}
0 & =\nabla g(q(t))^{\top} M^{-1} p(t) \\
& =\nabla g(q(t))^{\top} M^{-1}\left[p_{0}+\int_{0}^{t} \nabla U(q(\zeta)) \mathrm{d} \zeta-\int_{0}^{t} \nabla g(q(\zeta)) \lambda(\zeta) \mathrm{d} \zeta\right] \tag{1.10}
\end{align*}
$$

from which one derives the integral equation

$$
\begin{align*}
& \nabla g(q(t))^{\top} M^{-1} \int_{0}^{t} \nabla g(q(\zeta)) \lambda(\zeta) \mathrm{d} \zeta \\
= & \nabla g(q(t))^{\top} M^{-1}\left[p_{0}+\int_{0}^{t} \nabla U(q(\zeta)) \mathrm{d} \zeta\right] . \tag{1.11}
\end{align*}
$$

[^0]: * Received March 18, 2022 / Revised version received October 27, 2022 / Accepted January 31, 2023 / Published online October 11, 2023 /

 1) Corresponding author
