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Abstract

The truncated singular value decomposition has been widely used in many areas of

science including engineering, and statistics, etc. In this paper, the original truncated

complex singular value decomposition problem is formulated as a Riemannian optimiza-

tion problem on a product of two complex Stiefel manifolds, a practical algorithm based

on the generic Riemannian trust-region method of Absil et al. is presented to solve the

underlying problem, which enjoys the global convergence and local superlinear conver-

gence rate. Numerical experiments are provided to illustrate the efficiency of the proposed

method. Comparisons with some classical Riemannian gradient-type methods, the existing

Riemannian version of limited-memory BFGS algorithms in the MATLAB toolbox Manopt

and the Riemannian manifold optimization library ROPTLIB, and some latest infeasible

methods for solving manifold optimization problems, are also provided to show the merits

of the proposed approach.
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1. Introduction

In linear algebra, the singular value decomposition (SVD) of a complex matrix A ∈ C
m×n

is a factorization of the form UΣV H , where U ∈ Cm×m and V ∈ Cn×n are unitary matrices,

Σ ∈ Cm×n is a rectangular diagonal matrix with non-negative real numbers on the diagonal.

The diagonal entries σi = Σii of Σ are known as the singular values of A. The number of non-

zero singular values is equal to the rank of A. The columns of U and the columns of V are called

the left-singular vectors and right-singular vectors of A, respectively. The truncated singular

value decomposition (TSVD) is a kind of reduced SVDs, in which only the p (p ≤ rank(A))

column vectors of U and p row vectors of V H corresponding to the p largest singular values

Σp are calculated. The rest of the matrix is discarded. This can be much quicker and more

economical than the compact SVD if p ≪ rank(A). The matrix Up is thus m× p, Σp is p× p

diagonal, and Vp is n× p. Of course the truncated SVD is no longer an exact decomposition of

the original matrix A, but the approximate matrix Ã = UpΣpV
H
p is in a very useful sense the

closest approximation to A that can be achieved by a matrix of rank p. To find p (≤ rank(A))

left and right singular vectors associated with the p largest singular values of a complex matrix

A ∈ Cm×n, a closely related problem is to solve the following optimization problem [3,27,29–31]:

maximize Tr(UHAVΘ),

subject to U ∈ C
m×p, V ∈ C

n×p, UHU = Ip, V HV = Ip,
(1.1)

where Θ = diag(µ1, · · · , µp), with µ1 > · · · > µp > 0 arbitrary and 1 ≤ p ≤ rank(A), and

where Ip is the identity matrix of order p. Here, the arbitrary diagonal matrix Θ with positive

diagonal elements in descending order plays a role in appropriately ordering the columns of U

and V ([29, Chapter 5] and [30]). In (1.1), the notation Tr(·) denotes the real part of the trace

of a given complex square matrix, which corresponds to the inner product for complex vector

space, i.e., in C
p×q, we define the inner product

〈M,N〉 := Tr(MHN) = trace
(

Re(M)T Re(N)
)

+ trace
(

Im(M)T Im(N)
)

for all M,N ∈ C
p×q, where Re(M) and Im(M) denote the real and imaginary parts of M ,

respectively. Then C
p×q is a Hilbert inner product space and the norm of a complex matrix

M generated by this inner product is the matrix Frobenius norm given by ‖M‖2 = Tr(MHM).

A global optimal solution to the problem (1.1) provides a collection of p dominant left and right

singular vectors of A. Let (U∗, V ∗) be an optimal solution to the problem (1.1). Then, the

j-th columns of U∗ and V ∗ are the left and right singular vectors of A associated with the j-th

dominant singular value, respectively [3, 27, 29–31]. In addition, the p largest singular values

σ1 ≥ · · · ≥ σp can be calculated through the formula U∗HAV ∗ = diag(σ1, · · · , σp).

Mathematical applications of the TSVD include computing the matrix low-rank approxima-

tion [11], analysing the ill-posed models [19] and solving the ill-conditioned system of algebraic

equation [12]. In the ill-posed models, the ill conditioned of the model is mainly reflected in

the amplification of the small singular values of the coefficient matrix on the parameters and

their variances. The basic idea of the truncated singular value method is to cut off these small

singular values and reconstruct the coefficient matrix to weaken the ill-posedness of the model.

The TSVD is also extremely useful in all areas of science, engineering, and statistics, such as

bioluminescence tomography (BLT) [40] and through-the-wall microwave imaging (TWI) [16].

In BLT, TSVD regularization method is applied to solving BLT inverse problem with the source


