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Abstract

The focus of this paper is on two novel linearized Crank-Nicolson schemes with noncon-

forming quadrilateral finite element methods (FEMs) for the nonlinear coupled Schrödin-

ger-Helmholtz equations. Optimal L2 and H1 estimates of orders O(h2+τ 2) and O(h+τ 2)

are derived respectively without any grid-ratio condition through the following two keys.

One is that a time-discrete system is introduced to split the error into the temporal error

and the spatial error, which leads to optimal temporal error estimates of order O(τ 2) in L2

and the broken H1- norms, as well as the uniform boundness of numerical solutions in L∞-

norm. The other is that a novel projection is utilized, which can iron out the difficulty of

the existence of the consistency errors. This leads to derive optimal spatial error estimates

of orders O(h2) in L2-norm and O(h) in the broken H1-norm under the H2 regularity of

the solutions for the time-discrete system. At last, two numerical examples are provided

to confirm the theoretical analysis. Here, h is the subdivision parameter, and τ is the time

step.
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1. Introduction

Consider the following generalized nonlinear coupled Schrödinger-Helmholtz equations:





iut +∆u+ φf(|u|)u = 0, (X, t) ∈ Ω× (0, T ],

αφ− β2∆φ = f(|u|)|u|2, (X, t) ∈ Ω× (0, T ],

u = φ = 0, (X, t) ∈ ∂Ω× [0, T ],

u(X, 0) = u0(X), X ∈ Ω,

(1.1)

in which X = (x, y), T < +∞ and Ω is a convex bounded domain in Rd (d = 2) with the

boundary ∂Ω. i =
√
−1, α, β are real nonnegative constants with α + β 6= 0. f : R → R

and u0 : Ω → C are given functions. The complex-valued function u stands for the single

particle wave function, the real-valued function φ(X, t) denotes the potential. The system

(1.1) models many different physical phenomena in optics, quantum mechanics, and plasma

physics, and so forth. When α = 0, the system (1.1) reduces to the Schrödinger-Poisson
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model [13, 19, 28]. And when β = 0, the system (1.1) degenerates to a generalized nonlinear

Schrödinger equation [1,30]. Besides, we refer [5,53] for other Schrödinger type equations such

as the Schrödinger-Poisson-Slater model.

The nonlinear Schrödinger type equations have been attracted extensive attention from

many researchers. A series of mathematical studies have been devoted for diverse Schrödinger

type equations, such as well-posedness and dynamical properties, readers can refer to [1, 4, 7,

13, 19, 29] and the references therein. Along the numerical front, various numerical methods

also have been investigated extensively for the nonlinear Schrödinger type equations, including

finite difference methods [3,6,26,44,45,52], spectral or pseudo-spectral methods [12,14,18,46],

FEMs [25,27,34,36,41,49,50], finite difference methods with the scalar auxiliary variable (SAV)

formulation [9], Gauss collocation FEM based on the SAV approach [11], discontinuous Galerkin

methods [16, 47], and other methods [2, 21, 24, 51]. Especially, the linearized backward Euler

Galerkin FEMs [48], Crank-Nicolson Galerkin FEMs [42] and BDF2 Galerkin FEMs [38] were

studied for Schrödinger-Helmholtz system. Both of them derived optimal L2 error estimates

for r-order conforming FEMs without any grid-ratio condition. Due to some pollution arising

from the approximation used for the nonlinear terms φf(|u|)u and f(|u|)|u|2, only the error

estimates at the time instant tn+1/2 instead of the time division node tn for the potential φ was

derived in [42].

As we know, error estimates without any grid-ratio condition was first introduced by Li

and Sun’s work [23] through a time-space error splitting technique. Later on, this method has

been established extensively to obtain optimal L2 error estimates (see [20, 22, 34, 39, 41]) and

to derive superconvergence error estimates (see [25, 33, 35, 43]) for various nonlinear problems.

However, there are few results on the nonconforming FEMs by such method except for [35,

49]. Especially, how to extend the above conforming FEMs to nonconforming (quadrilateral)

FEMs for the strongly nonlinear and coupled system such as Schrödinger-Helmholtz equations

is a great challenge because several entitative difficulties need to be overcome. First, for the

nonconforming FEM, it seems that we cannot directly obtain optimal L2 error estimates, due

to the existence of the consistency error. Although we can use superconvergent techniques to

improve the convergence order, it requires higher regularity of solution [49], and need some

special meshes, such as rectangular meshes. However, the regularity of the solution for the time

discrete system is only H2+ǫ (0 ≤ ǫ < 1) on polygonal area. Second, the inner product cannot

exchange in complex space, i.e.,

Re
(
∂̄τ ξ

n, ξn
)
=

1

2τ

(
‖ξn‖20 − ‖ξn−1‖20 + ‖ξn − ξn−1‖20

)
,

unlike in real space, we can use

(∂̄τ ξ
n, ξn) =

1

2τ
(‖ξn‖20 − ‖ξn−1‖20 + ‖ξn − ξn−1‖20),

directly. Third, the strong coupled nonlinear term φf(|u|)u and strong nonlinear term f(|u|)|u|2.
These lead to the absence of ∂̄τ ξ

n on the left-hand of error equations when we take vh = ∂̄τ ξ
n

in (3.36a) to estimate ‖ξn‖1,h directly. The so-called lifting techniques developed in [49] for

Schrödinger equation and the skills utilized in [35] for parabolic equation does not work.

Up to now, we have not found nonconforming FEMs for the nonlinear Schrödinger-Helmholtz

equations. Our goal in this work is to develop nonconforming FEMs for the system (1.1) on

quadrilateral meshes, and then derive optimal L2 and the broken H1 estimates without any

grid-ratio condition. Our work consists of the following three ingredients. First, different from


