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Abstract. In the previous paper [CSIAM Trans. Appl. Math. 2 (2021), 1–55], the
authors proposed a theoretical framework for the analysis of RNA velocity, which
is a promising concept in scRNA-seq data analysis to reveal the cell state-transition
dynamical processes underlying snapshot data. The current paper is devoted to the
algorithmic study of some key components in RNA velocity workflow. Four impor-
tant points are addressed in this paper: (1) We construct a rational time-scale fixa-
tion method which can determine the global gene-shared latent time for cells. (2) We
present an uncertainty quantification strategy for the inferred parameters obtained
through the EM algorithm. (3) We establish the optimal criterion for the choice of
velocity kernel bandwidth with respect to the sample size in the downstream analysis
and discuss its implications. (4) We propose a temporal distance estimation approach
between two cell clusters along the cellular development path. Some illustrative nu-
merical tests are also carried out to verify our analysis. These results are intended to
provide tools and insights in further development of RNA velocity type methods in
the future.
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1 Introduction

The development of single-cell RNA sequencing (scRNA-seq) technology has revolution-
ized the resolution and capability to dissect the cell-fate determination process [42]. How-
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Figure 1: The computational workflow of RNA velocity analysis and under-addressed issues.

ever, traditional scRNA-seq datasets only provide static snapshots of gene expression
among cells at a certain time point, which lack the direct temporal information to infer
the dynamics of cell state transitions [47]. To address this limitation, the RNA velocity
method [21] utilizes both unspliced and spliced counts in scRNA-seq data to model and
infer the dynamics of mRNA expression and splicing process, allowing the prediction of
gene expression changes over time, and the specification of directionality during devel-
opment. The method has been applied widely in different biological systems [1, 9, 12],
and the computational workflow of RNA velocity analysis has been established and un-
dergone rapid development [3, 21, 23, 50] (Fig. 1).

To improve the effectiveness and robustness of RNA velocity analysis, various algo-
rithmic modifications have been proposed throughout the computational workflow. For
the parameter inference step, scVelo utilizes an Expectation-Maximization (EM) proce-
dure between latent time specification and kinetic parameter update to generalize the
steady-state assumption to the transient dynamical process [3]. In addition, κ-velo pro-
poses to calculate a gene-shared latent time for each cell by approximating the traveling
time with the number of cells in-between [29], and UniTvelo calculates the unified latent
time by aggregating the gene-specific time quantiles [10]. Recently, VeloVAE utilizes vari-
ational Bayesian inference and autoencoder to compute the gene-shared latent time and
cell latent state [15]. To account for the uncertainty of inferred parameters incurred by
noise and sparsity in spliced or unspliced counts, CellRank adopts the multivariate nor-
mal model to quantify the velocity distribution [23], while VeloVI employs the bootstrap
strategy [11]. Recently, pyro-Velo proposes a Bayesian approach to model the posterior
distribution of parameters [35].

Based on the inferred RNA velocity, downstream dynamical analysis tools such as
low-dimensional embedding [1, 34] and trajectory inference [10, 27, 50] are developed
by leveraging the cell-cell neighbor graph directed by the velocities. Pertinent to such
methods is the construction of a cellular random walk transition probability (or weight)


